IBM XL C/C++ for Linux, V13.1.1

Getting Started with XL C/C++
for Little Endian Distributions

Version 13.1.1

<|ll

IBM XL C/C++ for Linux, V13.1.1

Getting Started with XL C/C++
for Little Endian Distributions

Version 13.1.1

<|ll

Note
FBefore using this information and the product it supports, read the information in ['Notices” on page 25,

First edition

This edition applies to IBM XL C/C++ for Linux, V13.1.1 (Program 5765-J08; 5725-C73) and to all subsequent
releases and modifications until otherwise indicated in new editions. Make sure you are using the correct edition
for the level of the product.

© Copyright IBM Corporation 1996, 2014.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document .

Conventions

Related 1nformat10n .
IBM XL C/C++ mforrnatlon
Standards and specifications .
Other IBM information .
Other information

Technical support. .

How to send your comments .

Chapter 1. Introducing XL C/C++ .

Commonality with other IBM compilers .

Operating system and hardware support .

A highly configurable compiler .

Language standard compliance .
Compatibility with GNU

Source-code migration and conformance checkmg

Libraries.

Tools, utilities, and commands
Advance Toolchain 8.0 support .
Program optimization
Diagnostic listings

Symbolic debugger support

Chapter 2. Migrating to IBM XL C/C++
for Linux, V13.1.1.

Migrating from blg endian Linux to llttle endlan
Linux.
Compiler optrons

Supported GCC optlons

© Copyright IBM Corp. 1996, 2014

.V

. viii
. viii

-
X

X X X X

N OO U R W WNR P -,

O O

-q options not available
Template model .
Changes in predefined macro support
Compiler pragmas .

Chapter 3. Setting up and customizing
XL C/C++.

Using custom compiler conflguratlon f11es .

Chapter 4. Developing appllcatlons
with XL C/C++

The compiler phases
Editing C/C++ source files .
Compiling with XL C/C++ .
Invoking the compiler .
Specifying compiler options .
XL C/C++ input and output files .

Linking your compiled applications with XL C/ C++

Dynamic and static linking .

Running your compiled application

XL C/C++ compiler diagnostic aids .
Debugging compiled applications . .
Determining which level of XL C/C++ is bemg
used.

Notices ..
Trademarks and service marks .

Index

.13
. 15
.15
. 15

.17
.17

. 19
.19
.19
.20
.20
.20

.21
22

.22
.22
.23
.23

.24

. 25
.27

. 29

iii

iV XL C/C++: Getting Started for Little Endian Distributions

About this document

This document contains overview and basic usage information for the IBM® XL
C/C++ for Linux, V13.1.1 compiler.

Who should read this document

This document is intended for C and C++ developers who are looking for
introductory overview and usage information for XL C/C++. It assumes that you
have some familiarity with command-line compilers, a basic knowledge of the C
and C++ programming languages, and basic knowledge of operating system
commands. Programmers new to XL C/C++ can use this document to find
information on the capabilities and features unique to XL C/C++.

How to use this document

Unless indicated otherwise, all of the text in this reference pertains to both C and
C++ languages. Where there are differences between languages, these are indicated
through qualifying text and icons, as described in

Throughout this document, the xlc and xlc++ compiler invocations are used to
describe the actions of the compiler. You can, however, substitute other forms of

the compiler invocation command if your particular environment requires it, and
compiler option usage will remain the same unless otherwise specified.

While this document covers information on configuring the compiler environment,
and compiling and linking C or C++ applications using the XL C/C++ compiler, it
does not include the following topics:

* Compiler installation: see the XL C/C++ Installation Guide for information on
installing XL C/C++.

* Compiler options: see the XL C/C++ Compiler Reference for detailed information
on the syntax and usage of compiler options.

* The C or C++ programming languages: see the XL C/C++ Language Reference for
information on the syntax, semantics, and IBM implementation of the C or C++
programming languages.

* Programming topics: see the XL C/C++ Optimization and Programming Guide for
detailed information on developing applications with XL C/C++, with a focus
on program portability and optimization.

Conventions
Typographical conventions

© Copyright IBM Corp. 1996, 2014 v

vi

The following table shows the typographical conventions used in the IBM XL
C/C++ for Linux, V13.1.1 information.

Table 1. Typographical conventions

Typeface

bold

Indicates Example

Lowercase commands, executable | The compiler provides basic
names, compiler options, and invocation commands, xlc and x1C
directives. (xlc++), along with several other

compiler invocation commands to
support various C/C++ language
levels and compilation environments.

italics

Parameters or variables whose Make sure that you update the size
actual names or values are to be parameter if you return more than
supplied by the user. Italics are the size requested.

also used to introduce new terms.

underlining

The default setting of a parameter |nomaf | maf
of a compiler option or directive.

monospace

Programming keywords and To compile and optimize

library functions, compiler builtins, | myprogram.c, enter: x1c myprogram.c
examples of program code, -03.

command strings, or user-defined

names.

Qualifying elements (icons)

Most features described in this information apply to both C and C++ languages. In
descriptions of language elements where a feature is exclusive to one language, or
where functionality differs between languages, this information uses icons to
delineate segments of text as follows:

Table 2. Qualifying elements

Qualifier/Icon

Meaning

HH

C only ends

C only, or C only begins | The text describes a feature that is supported in the C language

only; or describes behavior that is specific to the C language.

begins

C++
C++

C++ only ends

C++ only, or C++ only The text describes a feature that is supported in the C++

language only; or describes behavior that is specific to the C++
language.

IBM extension ends

IBM extension, or IBM The text describes a feature that is an IBM extension to the
extension begins standard language specifications.

XL C/C++: Getting Started for Little Endian Distributions

Table 2. Qualifying elements (continued)

Qualifier/Icon Meaning

Cl11, or C11 begins The text describes a feature that is introduced into standard C
b C11 | as part of C11.

| C11_ <

C11 ends

C++11, or C++11 begins The text describes a feature that is introduced into standard
C++ as part of C++11.

C++11 ends

Syntax diagrams

Throughout this information, diagrams illustrate XL C/C++ syntax. This section
will help you to interpret and use those diagrams.

* Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The »—— symbol indicates the beginning of a command, directive, or statement.

The — symbol indicates that the command, directive, or statement syntax is
continued on the next line.

The »— symbol indicates that a command, directive, or statement is continued
from the previous line.

The —><« symbol indicates the end of a command, directive, or statement.

Fragments, which are diagrams of syntactical units other than complete
commands, directives, or statements, start with the |— symbol and end with
the —| symbol.

* Required items are shown on the horizontal line (the main path):

A\
A

»»—keyword—required_argument

* Optional items are shown below the main path:

v
A

»»—keyword
I—optional_ar‘gumen t—l

* If you can choose from two or more items, they are shown vertically, in a stack.

If you must choose one of the items, one item of the stack is shown on the main
path.

»—keyword—[requi red_argumentl »<
required_argumen t2—|

If choosing one of the items is optional, the entire stack is shown below the
main path.

About this document Vil

v
A

»»—keyword
i:zpt ional_argument]:l

ptional_argument2

* An arrow returning to the left above the main line (a repeat arrow) indicates
that you can make more than one choice from the stacked items or repeat an
item. The separator character, if it is other than a blank, is also indicated:

v

v
A

»»—keyword

repeatable_argument

* The item that is the default is shown above the main path.

A\
A

efault_argumen t—l
»»—keyword lternate_argument

* Keywords are shown in nonitalic letters and should be entered exactly as shown.

* Variables are shown in italicized lowercase letters. They represent user-supplied
names or values.

* If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

Examples in this information

The examples in this information, except where otherwise noted, are coded in a
simple style that does not try to conserve storage, check for errors, achieve fast
performance, or demonstrate all possible methods to achieve a specific result.

The examples for installation information are labelled as either Example or Basic
example. Basic examples are intended to document a procedure as it would be
performed during a basic, or default, installation; these need little or no
modification.

Related information

viii

The following sections provide related information for XL C/C++:

IBM XL C/C++ information
XL C/C++ provides product information in the following formats:
* README files

README files contain late-breaking information, including changes and
corrections to the product information. README files are located by default in
the XL C/C++ directory, and in the root directory and subdirectories of the
installation DVD.

* Installable man pages

Man pages are provided for the compiler invocations and all command-line
utilities provided with the product. Instructions for installing and accessing the
man pages are provided in the IBM XL C/C++ for Linux, V13.1.1 Installation
Guide.

* Online product documentation

XL C/C++: Getting Started for Little Endian Distributions

The fully searchable HTML-based documentation is viewable in IBM Knowledge
Center at |http://www.ibm.com /support/knowledgecenter /SSXVZZ_13.1.1/|
fcom.ibm.compilers.linux.doc/welcome.html|

¢ PDF documents

PDF documents are available on the web at |http://www.ibm.com /support /|
[docview.wss?uid=swg27036675

The following files comprise the full set of XL C/C++ product information:

Table 3. XL C/C++ PDF files

PDF file
Document title name Description
IBM XL C/C++ for Linux, |install.pdf Contains information for installing XL C/C++
V13.1.1 Installation Guide, and configuring your environment for basic
GC27-6540-00 compilation and program execution.
Getting Started with IBM | getstart.pdf |Contains an introduction to the XL C/C++
XL C/C++ for Linux, product, with information on setting up and
V13.1.1, GI13-2875-00 configuring your environment, compiling and

linking programs, and troubleshooting
compilation errors.

IBM XL C/C++ for Linux, |compiler.pdf |Contains information about the various
V13.1.1 Compiler Reference, compiler options, pragmas, macros,
SC27-6570-00 environment variables, and built-in functions.

IBM XL C/C++ for Linux, |langref.pdf Contains information about language extensions

V13.1.1 Language Reference, for portability and conformance to
5C27-6550-00 nonproprietary standards.

IBM XL C/C++ for Linux, |proguide.pdf | Contains information on advanced

V13.1.1 Optimization and programming topics, such as application
Programming Guide, porting, interlanguage calls with Fortran code,
SC27-6560-00 library development, application optimization,

and the XL C/C++ high-performance libraries.

To read a PDF file, use Adobe Reader. If you do not have Adobe Reader, you
can download it (subject to license terms) from the Adobe website at
[http:/ /www.adobe.com|

More information related to XL C/C++ including IBM Redbooks® publications,
white papers, tutorials, documentation errata, and other articles, is available on the
web at:

[http:/ /www.ibm.com /support/docview.wss?uid=swg27036675|

For more information about boosting performance, productivity, and portability,
see the C/C++ café at |https:/ /www.ibm.com/developerworks/community /|
roups/service/html/ communityview?communityUuid:5894415f—be62—4bc0—81c5—|

3956e82276f3]

Standards and specifications

XL C/C++ is designed to support the following standards and specifications. You
can refer to these standards for precise definitions of some of the features found in
this information.

* Information Technology - Programming languages - C, ISO/IEC 9899:1990, also
known as C89.

* Information Technology - Programming languages - C, ISO/IEC 9899:1999, also
known as C99.

About this document 1X

http://www.ibm.com/support/knowledgecenter/SSXVZZ_13.1.1/com.ibm.compilers.linux.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/SSXVZZ_13.1.1/com.ibm.compilers.linux.doc/welcome.html
http://www.ibm.com/support/docview.wss?uid=swg27036675
http://www.ibm.com/support/docview.wss?uid=swg27036675
http://www.adobe.com
http://www.ibm.com/support/docview.wss?uid=swg27036675
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3

* Information Technology - Programming languages - C, ISO/IEC 9899:2011, also
known as C11. (Partial support)

* Information Technology - Programming languages - C++, ISO/IEC 14882:1998, also
known as C++98.

* Information Technology - Programming languages - C++, ISO/IEC 14882:2003, also
known as Standard C++.

* Information Technology - Programming languages - C++, ISO/IEC 14882:2011, also
known as C++11. (Partial support)

* Information Technology - Programming languages - Extensions for the programming
language C to support new character data types, ISO/IEC DTR 19769. This draft
technical report has been accepted by the C standards committee, and is
available at |http:/ /www.open-std.org /JTC1/SC22/WG14/www /docs/|

|1_11040.]:_>df|

* AltiVec Technology Programming Interface Manual, Motorola Inc. This specification
for vector data types, to support vector processing technology, is available at
[http:/ /www.freescale.com/files /32bit/doc /ref_manual/ ALTIVECPIM.pdf|

* ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.

Other IBM information

* ESSL product documentation available at |http://www.ibm.com/support/|
[knowledgecenter/SSFHY8 /essl_welcome. html|

Other information
« Using the GNU Compiler Collection available at fhttp://gcc.gnu.org/onlinedocs|

Technical support

Additional technical support is available from the XL C/C++ Support page at
http:/ /www.ibm.com /support/entry/portal /overview /software/rational / |
x]_c~c++_for_linux} This page provides a portal with search capabilities to a large
selection of Technotes and other support information.

If you cannot find what you need, you can send email to compinfo@cn.ibm.com.

For the latest information about XL C/C++, visit the product information site at
[http:/ /www.ibm.com /software /products /us/en /xlcpp-linux /|

How to send your comments

Your feedback is important in helping to provide accurate and high-quality
information. If you have any comments about this information or any other XL
C/C++ information, send your comments by email to compinfo@cn.ibm.com.

Be sure to include the name of the manual, the part number of the manual, the

version of XL C/C++, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).

X XL C/C++: Getting Started for Little Endian Distributions

http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1040.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1040.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf
http://www.ibm.com/support/knowledgecenter/SSFHY8/essl_welcome.html
http://www.ibm.com/support/knowledgecenter/SSFHY8/essl_welcome.html
http://gcc.gnu.org/onlinedocs
http://www.ibm.com/support/entry/portal/overview/software/rational/xl_c~c++_for_linux
http://www.ibm.com/support/entry/portal/overview/software/rational/xl_c~c++_for_linux
http://www.ibm.com/software/products/us/en/xlcpp-linux/

Chapter 1. Introducing XL C/C++

IBM XL C/C++ for Linux, V13.1.1 is an advanced, high-performance compiler that
can be used for developing complex, computationally intensive programs,
including interlanguage calls with C and Fortran programs.

This section contains information about the features of the XL C/C++ compiler at a
high level. It is intended for people who are evaluating the compiler, and for new
users who want to find out more about the product.

Commonality with other IBM compilers

IBM XL C/C++ for Linux, V13.1.1 is part of a larger family of IBM C, C++, and
Fortran compilers. XL C/C++, together with XL Fortran, comprises the family of
XL compilers.

These compilers are derived from a common code base that shares compiler
function and optimization technologies for a variety of platforms and
programming languages. Programming environments include IBM AIX®, IBM Blue
Gene®/P, IBM Blue Gene®/Q, IBM i, selected Linux distributions, IBM z/0S®, and
IBM z/VM®. The common code base, along with compliance with international
programming language standards, helps support consistent compiler performance
and ease of program portability across multiple operating systems and hardware
platforms.

In addition, IBM XL C/C++ for Linux, V13.1.1 leverages the Clang infrastructure
from the open source community for a portion of its compiler front end. Clang is a
component of the LLVM open source compiler and toolchain project and provides
the C and C++ language family front end for LLVM. XL C/C++ combines the
Clang front-end infrastructure with the advanced optimization technology from
IBM. For additional information about Clang, see the LLVM web site at:

[http:/ /clang llvm.org /|

Operating system and hardware support

This section describes the operating systems and hardware that IBM XL C/C++ for
Linux, V13.1.1 supports.

IBM XL C/C++ for Linux, V13.1.1 supports the following operating systems:
* Ubuntu Server V14.04

* Ubuntu Server V14.10

* SUSE Linux Enterprise Server 12

See the README file and ['Before installing XL C/C++"|in the XL C/C++
Installation Guide for a complete list of requirements.

The compiler, its libraries, and its generated object programs run on any IBM
Power Systems "~ server supported by your operating system distribution with the
required software and disk space.

© Copyright IBM Corp. 1996, 2014 1

http://clang.llvm.org/

To exploit the various supported hardware configurations, the compiler provides
options to tune the performance of applications according to the hardware type
that runs the compiled applications.

A highly configurable compiler

You can use a variety of compiler invocation commands and options to tailor the
compiler to your unique compilation requirements.

Compiler invocation commands

XL C/C++ provides several commands to invoke the compiler, for example, xIC,
xle++, and xlc. Compiler invocation commands are provided to support all
standardized C/C++ language levels, and many popular language extensions as
well. These invocation commands allow for threadsafe compilation, and you can
use them to link the programs that use multithreading.

For more information about XL C/C++ compiler invocation commands, see
['Tnvoking the compiler'|in the XL C/C++ Compiler Reference.

Compiler options

You can choose from a large selection of compiler options to control compiler
behavior. You can benefit from using different options for the following tasks:

* Debugging your applications
* Optimizing and tune application performance

* Selecting language levels and extensions for compatibility with nonstandard
features and behaviors that are supported by other C or C++ compilers

* Performing many other common tasks that would otherwise require changing
the source code

You can specify compiler options through a combination of environment variables,
compiler configuration files, command line options, and compiler directive
statements embedded in your program source.

For more information about XL C/C++ compiler options, see |'Compiler options|
in the XL C/C++ Compiler Reference.

Custom compiler configuration files

The installation process creates a default compiler configuration file containing
stanzas that define compiler option default settings.

If you frequently specify compiler option settings other than the default settings of
XL C/C++, you can use makefiles to define your settings. Alternatively, you can
create custom configuration files to define your own frequently used option
settings.

For more information about using custom compiler configuration files, see
fcustom compiler configuration files” on page 17,

2 XL C/C++: Getting Started for Little Endian Distributions

Language standard compliance

IBM XL C/C++ for Linux, V13.1.1 supports the following C/C++ programming
language specifications.

C language specifications

* Partial support for ISO/IEC 9899:2011 (referred to as C11)
* ISO/IEC 9899:1999 (referred to as C99)

* ISO/IEC 9899:1990 (referred to as C89)

C++ language specifications
* Partial support for ISO/IEC 14882:2011 (referred to as C++11)
» ISO/IEC 14882:2003 (referred to as Standard C++)

* ISO/IEC 14882:1998, the first official specification of the language (referred to as
C++98)

In addition to the standard language levels, XL C/C++ supports the following
language extensions:

* Language extensions to support vector programming
* A subset of GNU C and C++ language extensions

See|'Language levels and language extensions'|in the XL C/C++ Language Reference
for more information about C/C++ language specifications and extensions.

Compatibility with GNU
XL C/C++ supports a subset of the GNU compiler command options to facilitate
porting applications that are developed with the gcc and g++ compilers.

In addition, IBM XL C/C++ for Linux, V13.1.1 leverages the Clang infrastructure
from the open source community for a portion of its compiler front end. Clang is a
component of the LLVM open source compiler and toolchain project and provides
the C and C++ language family front end for LLVM. For additional information
about Clang, see the LLVM web site at: [http:/ /clang llvm.org /|

XL C/C++ uses GNU C and GNU C++ header files together with the GNU C and
C++ runtime libraries to produce code that is binary-compatible with that
produced by GCC. Portions of an application can be built with XL C/C++ and
combined with portions built with GCC to produce an application that behaves as
if it had been built solely with GCC.

To achieve binary compatibility with GCC-compiled code, a program compiled
with XL C/C++ includes the same headers as those used by a GNU compiler
residing on the same system. To ensure that the proper versions of headers and
runtime libraries are present on the system, the prerequisite GCC compiler must be
installed before installing XL C/C++.

Some additional noteworthy points about this relationship are:
 IBM built-in functions coexist with GNU C built-ins.

* Compilation of C and C++ programs uses the GNU C and GNU C++
header files.

* Compilation uses the GNU assembler for assembler input files.
* Compiled C code is linked to the GNU C runtime libraries.

Chapter 1. Introducing XL C/C++ 3

http://clang.llvm.org/

* Compiled C++ code is linked to the GNU C and GNU C++ runtime
libraries.

* Code compiled with XL C/C++can be debugged with the GNU debugger,
gdb.

Source-code migration and conformance checking

XL C/C++ provides compiler invocation commands that instruct the compiler to
compile your application code to a specific language level.

You can also use the -qlang1v1 or the -std compiler option to specify a language
level. If the language or language extension elements in your program source do
not conform to the specified language level, the compiler issues diagnostic
messages.

See in the XL C/C++ Compiler Reference for more information.

Libraries

XL C/C++ includes a runtime environment containing a number of libraries.
Mathematical Acceleration Subsystem library

The Mathematical Acceleration Subsystem (MASS) library consists of scalar and
vector mathematical built-in functions tuned specifically for optimum performance
on supported processor architectures. You can choose a MASS library to support
high-performance computing on a broad range of processors, or you can select a
library tuned to support a specific processor family.

The MASS library functions offer improved performance over the default 1ibm
math library routines. These libraries are threadsafe, and are called automatically
when you request specific levels of optimization for your application. You can also
make explicit calls to MASS library functions, regardless of whether optimization
options are in effect or not.

For more information, see ['Using the Mathematical Acceleration Subsystem'|in the
XL C/C++ Optimization and Programming Guide.

Basic Linear Algebra Subprograms

The Basic Linear Algebra Subprograms (BLAS) set of high-performance algebraic
functions are shipped in the libxlopt library. You can use these functions to:

* Compute the matrix-vector product for a general matrix or its transpose.

* Perform combined matrix multiplication and addition for general matrices or
their transposes.

For more information about using the BLAS functions, see ['Using the Basic Linear|
[Algebra Subprograms'|in the XL C/C++ Optimization and Programming Guide.

Other libraries

The following libraries are also shipped with XL C/C++:
* XL C++ Runtime Library contains support routines needed by the compiler.

4 XL C/C++: Getting Started for Little Endian Distributions

Support for Boost libraries

IBM XL C/C++ for Linux, V13.1.1 provides partial support for the Boost V1.55.0
libraries. A patch file is available that modifies the Boost V1.55.0 libraries so that
they can be built and used with XL C/C++ applications. The patch or modification
file does not extend nor provide additional functionality to the Boost libraries.

To access the patch file for building the Boost libraries, go to
[Regression Test Summaries| and select download required Boost modification

file for your compiler release and platform.

You can download the latest Boost libraries at fhttp:/ /www.boost.org /|

For more information on support for libraries, search on the XL C/C++ Compiler
support page at [http:/ /www.ibm.com /support/entry /portal /overview /software /|
frational /xI_c~c++_for_linux|

Tools, utilities,

and commands

This topic introduces the main tools, utilities, and commands that are included
with XL C/C++. It does not contain all compiler tools, utilities, and commands.

Utilities

install The install utility installs and configures IBM XL C/C++ for Linux,
V13.1.1 for use on your system.

xlc_configure
You can use the x1c_configure utility to facilitate the use of XL C/C++
with IBM Advance Toolchain. For details, see "Using IBM XL C/C++ for
Linux, V13.1.1 with the Advance Toolchain" in XL C/C++ Compiler Reference.

Commands
Profile-directed feedback (PDF) related commands

cleanpdf command
The cleanpdf command removes all the PDF files or the specified
PDF files from the directory to which profile-directed feedback
data is written.

mergepdf command
The mergepdf command provides the ability to weigh the
importance of two or more PDF records when combining them into
a single record. The PDF records must be derived from the same
executable.

resetpdf command
The current behavior of the resetpdf command is the same as the
cleanpdf command, and is retained for compatibility with earlier
releases on other platforms.

showpdf command
The showpdf command displays the following types of profiling
information for all the procedures executed in a PDF run
(compilation under the -qpdfl option):

* Block-counter profiling
* Call-counter profiling
* Value profiling

Chapter 1. Introducing XL C/C++ 5

http://www.ibm.com/support/docview.wss?uid=swg27006911
http://www.ibm.com/support/docview.wss?uid=swg27006911
http://www.boost.org/
http://www.ibm.com/support/entry/portal/overview/software/rational/xl_c~c++_for_linux
http://www.ibm.com/support/entry/portal/overview/software/rational/xl_c~c++_for_linux

* Cache-miss profiling, if you specified the -qpdfl=1evel=2 option
during the -qpdfl phase.

You can view the first two types of profiling information in either
text or XML format. However, you can view value profiling and
cache-miss profiling information only in XML format.

For more information, see |-qpdfl, -qpdf2|in the XL C/C++ Compiler

Reference.

Advance Toolchain 8.0 support

IBM XL C/C++ for Linux, V13.1.1 fully supports IBM Advance Toolchain 8.0,
which is a set of open source development tools and runtime libraries. With IBM
Advance Toolchain, you can take advantage of the latest POWER® hardware
features on Linux, especially the tuned libraries.

For more information, see "Using IBM XL C/C++ for Linux, V13.1.1 with the
Advance Toolchain" in the XL C/C++ Compiler Reference.

Program optimization

XL C/C++ provides several compiler options that can help you control the
optimization and performance of your programs.

With these options, you can perform the following tasks:
* Select different levels of compiler optimizations.
* Control optimizations for loops, floating point, and other types of operations.

* Optimize a program for a particular class of machines or for a very specific
machine configuration, depending on where the program will run.

Optimizing transformations can give your application better overall execution
performance. XL C/C++ provides a portfolio of optimizing transformations
tailored to various supported hardware. These transformations offer the following
benefits:

* Reducing the number of instructions executed for critical operations

* Restructuring generated object code to make optimal use of the Power
Architecture

* Improving the usage of the memory subsystem

For more information, see these related topics:

+ |'Optimizing your applications'|in the XL C/C++ Optimization and Programming
Guide

* ['Optimizing and tuning options'|in the XL C/C++ Compiler Reference

* ['Compiler built-in functions'|in the XL C/C++ Compiler Reference

Diagnostic listings

The compiler output listings provide important information to help you develop
and debug your applications more efficiently.

For more information about the applicable compiler options and the listing itself,
see ['Compiler messages and listings'|in the XI. C/C++ Compiler Reference.

6 XLC/C++: Getting Started for Little Endian Distributions

Symbolic debugger support

You can instruct XL C/C++ to include debugging information in your compiled
objects by using different levels of the -g compiler option.

For detalils, see |-g|in XL C/C++ Compiler Reference.

The debugging information can be examined by gdb or any other symbolic
debugger to help you debug your programs.

Chapter 1. Introducing XL C/C++ 7

8 XLcC/Ct++: Getting Started for Little Endian Distributions

Chapter 2. Migrating to IBM XL C/C++ for Linux, V13.1.1

This section describes features of IBM XL C/C++ for Linux, V13.1.1 that you
should consider when moving your application that was compiled with versions of
XL C/C++ on other platforms.

Migrating from big endian Linux to little endian Linux
There are some factors that you should consider when moving your applications
from POWERS® big endian systems.

* To help migrate programs from big endian systems, you can use the
-qaltivec=be or -qaltivec=1eoption to toggle the vector element sequence in
registers to big endian or little endian element order.

Related information

[[Program migration from big-endian systems|

£ fmaltivec (-qaltivec)|

Compiler options

IBM XL C/C++ for Linux, V13.1.1 introduces support for many of the options
supported by GCC.

If you have makefiles for programs that were previously compiled with versions of
XL C/C++ on other platforms, you should also note that some of the options are
not available.

Supported GCC options

The following GCC options are supported in IBM XL C/C++ for Linux, V13.1.1.
For details about these options, see the GNU Compiler Collection online
documentation at fhttp:/ /gcc.egnu.org/onlinedocs /|

* @file

o -Hit#

e --help

* --sysroot
* --version
* -ansi

« -dD

« -dM

* -fansi-escape-codes

¢ -fasm, -fno-asm

* -fcolor-diagnostics

e -fcommon, -fno-common
* -fconstexpr-depth
 -fexceptions

* -ffast-math

© Copyright IBM Corp. 1996, 2014 9

http://gcc.gnu.org/onlinedocs/

 -fdiagnostic-parsable-fixits

* -fdiagnostics-fixit-info
 -fdiagnostics-format=[clang | msvc | vi]
* -fdiagnostic-show-category=[none |id | name]
* -fdiagnostic-show-template-tree

* -fdiagnostics-print-source-range-info
* -fdiagnostics-show-name

* -fdiagnostics-show-option

» -fdollars-in-identifiers, -fno-dollars-in-identifiers
¢ -fdump-class-hierarchy

* -ffreestanding

* -fgnu89-inline

* -thosted

* -finline-functions

* -fmessage-length

* -fno-access-control

* -fno-assume-sane-operator-new

¢ -fno-builtin

* -fno-diagnostics-show-caret

* -fno-diagnostics-show-option

* -fno-elide-type

* -fno-gnu-keywords

* -fno-operator-names

* -fno-rtti

* -fno-show-column

» -fpack-struct

* -fpermissive

e -fPIC, -fno-PIC

e -fPIE, -fno-PIE

* -fshort-enums

 -fshort-wchar

¢ -fshow-column

* -fshow-source-location
 -fsigned-bitfields, -fno-signed-bitfields
* -fsigned-char, -fno-signed-char

* -fstrict-aliasing

» -fsyntax-only

* -ftabstop=width

* -ftemplate-backtrace-limit

» -ftemplate-depth

s -ftime-report

e -ftls-model, -fno-tls-model

* -ftrap-function=name

* -ftrapping-math, -fnotrapping-math

* -funsigned-bitfields, -fno-unsigned-bitfields

10 XL C/C++: Getting Started for Little Endian Distributions

-funsigned-char, -fno-unsigned-char
-funroll-all-loops
-funroll-loops
-fvisibility
-idirafter
-imacros
-include

-iprefix

-iquote

-isysroot
-isystem

-iwithprefix

-maltivec, -mno-altivec
-mcpu

-mtune

-nodefaultlibs
-nostartfiles

-nostdinc

-nostdinc++

-Ofast

-pedantic
-pedantic-errors

-pie

-rdynamic

-shared

-shared-libgcc

-static

-static-libgcc

-std

-trigraphs

-w

-Wall
-Wambiguous-member-template
-Wbad-function-cast
-Wbind-to-temporary-copy
-Wc++11-compat

Chapter 2. Migrating to IBM XL C/C++ for Linux, V13.1.1

11

* -Wocast-align

* -Wchar-subscripts

* -Wcomment

* -Wconversion

* -Wdelete-non-virtual-dtor
* -Wempty-body

* -Wenum-compare

* -Werror

* -Werror=foo [specically, -Werror=unused-command-line-argument to switch
between warning/error for invalid options]

* -Weverything

* -Wextra-tokens

* -Wfatal-errors

* -Wfloat-equal

* -Wfoo

* -Wformat-nonliteral

* -Wformat-security

* -Wformat-y2k

» -Wignored-qualifiers

* -Wimplicit

* -Wimplicit-function-declaration
* -Wimplicit-int

* -Wmain

* -Wmissing-braces

* -Wmissing-field-initializers
* -Wmissing-prototypes

* -Wnarrowing

* -Wno-attributes

* -Wno-builtin-macro-redefined
* -Wno-deprecated

* -Wno-deprecated-declarations
* -Wno-division-by-zero

* -Wno-endif-labels

* -Wno-format

* -Wno-format-extra-args

* -Wno-format-zero-length
* -Wno-int-conversion

* -Wno-int-to-pointer-cast

* -Wno-invalid-offsetof

* -Wno-multichar

* -Wno-unused-result

* -Wno-return-local-addr

* -Wno-virtual-move-assign
* -Wnon-virtual-dtor

¢ -Wnonnull

12 XL C/C++: Getting Started for Little Endian Distributions

-Woverlength-strings
-Woverloaded-virtual
-Wpadded
-Wparantheses
-Wpedantic
-Wpointer-arith
-Wpointer-sign
-Wreorder
-Wreturn-type
-Wsequence-point
-Wshadow
-Wsign-compare
-Wsign-conversion
-Wsizeof-pointer-memaccess
-Wswitch
-Wsystem-headers
-Wtautological-compare
-Witrigraphs
-Wtype-limits
-Wundef
-Wuninitialized
-Wunknown-pragmas
-Wunused
-Wunused-label
-Wunused-parameter
-Wunused-value
-Wunused-variable
-Wvarargs
-Wvariadic-macros
-Wvla
-Wwrite-strings

-X

-X

-q options not available

The following -q options are not available for use with IBM XL C/C++ for Linux,
V13.1.1.

-qabi_version
-qalloca

-qassert

-qattr

-qcinc
-qcomplexgccincl
-qcplucmt
-qdbgfmt

Chapter 2. Migrating to IBM XL C/C++ for Linux, V13.1.1

13

* -qdbxextra

* -qdigraph
* -genum
* -qfdpr

* -qflag

* -gformat

* -gfuncsect

* -qgenproto
* -ghaltonmsg
* -qidirfirst

* -gignpragma

* -ginfo

* -gkeepinlines
* -gkeyword
* -qldbl28

* -qlibansi

* -qlibmpi

* -qlistfmt

* -glistopt

* -glonglit

* -qlonglong

* -gqmaxerr

* -qmbcs, -qdbcs
* -gminimaltoc

* -qoptdebug

* -gpack_semantic

* -gppline
* -gprint
* -gproto

* -gproclocal, -procimported
L] _qpr
¢ -qrestrict

* -gshowinc

* -gskipsrc
* -gsmp

* -qsource
* -gsrcmsg

* -gstackprotect

* -gstatsym
* -gsupress
* -gsymtab
* -qtabsize

* -qtempinc
* -qtemplaterecompile
* -qtemplateregistry

14 XL C/C++: Getting Started for Little Endian Distributions

* -qtempmax
* -qgthreaded
* -qtmplparse
* -qtrigraphs
* -qupconv
s -qutf

* -qvrsave

¢ -qwarn0x
* -qwarn64
* -gxcall

* -qxref

Template model

The template model used by IBM XL C/C++ for Linux, V13.1.1 is different from
that used with previous versions of the compiler.

IBM XL C/C++ for Linux, V13.1.1 supports Greedy instantiation. The compiler
generates a template instantiation in each compilation unit that uses it. The linker
discards the duplicates.

For more information about the C++ template model, see ['The C++ template|
in the XL C/C++ Optimization and Programming Guide

Changes in predefined macro support

The macros that are supported by IBM XL C/C++ for Linux, V13.1.1 are different
from the macros that are supported by other versions of the XL C/C++ compiler.

Some macros that are supported by other versions of XL C/C++ for various
platforms might be undefined in IBM XL C/C++ for Linux, V13.1.1. Refer to
['Compiler predefined macros'|in the XL C/C++ Compiler Reference for a full list of
supported macros.

You can specify the -Wunsupported-x1-macro option to check whether any
unsupported macro is used. If an unsupported macro is used in your code, the
compiler issues a warning message.

Compiler pragmas

IBM XL C/C++ for Linux, V13.1.1 introduces support for many of the pragmas
supported by GCC.

Supported GCC pragmas
The following GCC pragmas are supported in IBM XL C/C++ for Linux, V13.1.1.

For details about these pragmas, see the GNU Compiler Collection online
documentation at |http:/ /gcc.gnu.org/onlinedocs /|

* #pragma GCC dependency

* #pragma GCC diagnostic kind option
* #pragma GCC diagnostic push

* #pragma GCC diagnostic pop

Chapter 2. Migrating to IBM XL C/C++ for Linux, V13.1.1 15

http://gcc.gnu.org/onlinedocs/

#pragma
#pragma
#pragma
#pragma
#pragma
#pragma
#pragma
#pragma
#pragma
#pragma
#pragma
#pragma

GCC error string

GCC poison

GCC system_header

GCC visibility push(visibility)
GCC visibility pop

GCC warning string

message string

once

pop_macro("macro_name")
push_macro("macro_name"
redefine_extname oldname newname
unused

Supported IBM pragmas

#pragma
#pragma
#pragma
#pragma
#pragma
#pragma
#pragma
#pragma
#pragma
#pragma
#pragma

disjoint
execution_frequency
ibm independent Toop
nosimd
option_override

pack

reachable

simd_level

STDC CX_LIMITED RANGE
unroll, #pragma nounroll
weak

Related information:

TiL]

T

[Supported IBM pragmas|

[Supported GCC pragmas|

16 XL C/C++: Getting Started for Little Endian Distributions

Chapter 3. Setting up and customizing XL C/C++

For complete prerequisite and installation information for XL C/C++, see
finstalling XL C/C++"|in the XL C/C++ Installation Guide.

Using custom compiler configuration files

You can customize compiler settings and options by modifying the default
configuration file or creating your own configuration file.

You have the following options to customize compiler settings:

* The XL C/C++ compiler installation process creates a default compiler
configuration file. You can directly modify this configuration file to add default
options for specific needs. However, if you later apply updates to the compiler,
you must reapply all of your modifications to the newly installed configuration
file.

* You can create your own custom configuration file that either overrides or
complements the default configuration file. The compiler can recognize and
resolve compiler settings that you specify in your custom configuration files
with compiler settings that are specified in the default configuration file.
Compiler updates that might later affect settings in the default configuration file
does not affect the settings in your custom configuration files.

For more information, see "Using custom compiler configuration files" in the XL
C/C++ Compiler Reference.

© Copyright IBM Corp. 1996, 2014 17

18 XL C/C++: Getting Started for Little Endian Distributions

Chapter 4. Developing applications with XL C/C++

C/C++ application development consists of repeating cycles of editing, compiling,

linking, and running. By default, compiling and linking are combined into a sing
step.

Notes:

1. Before you can use the compiler, you must first ensure that XL C/C++ is
properly installed and configured. For more information, see the XL C/C++
Installation Guide.

2. To learn about writing C/C++ programs, refer to the XL C/C++ Language
Reference.

le

The compiler phases

A typical compiler invocation executes some or all of these activities in sequence.

For link time optimizations, some activities are executed more than once during a
compilation. As each compilation component runs, the results are sent to the next

step in the sequence.
1. Preprocessing of source files

2. Compilation, which may consist of the following phases, depending on what
compiler options are specified:

Front-end parsing and semantic analysis
High-level optimization

Low-level optimization

Register allocation

® 2 0 T o

Final assembly

3. Assemble the assembly (.s) files, and the unpreprocessed assembler (.S) files
after they are preprocessed

4. Object linking to create an executable application

To see the compiler step through these phases, specify the -v compiler option
when you compile your application. To see the amount of time the compiler
spends in each phase, specify -qphsinfo.

Editing C/C++ source files

To create C/C++ source programs, you can use any text editor available to your
system.

Source programs must be saved using a recognized file name suffix. See
[C/C++ input and output files” on page 21| for a list of suffixes recognized by XL
C/C++.

For a C or C++ source program to be a valid program, it must conform to the
language definitions specified in the XL C/C++ Language Reference.

© Copyright IBM Corp. 1996, 2014

19

Compiling with XL C/C++

XL C/C++ is a command-line compiler. Invocation commands and options can be
selected according to the needs of a particular C/C++ application.

Invoking the compiler
The compiler invocation commands perform all necessary steps to compile C or
C++ source files, preprocessed files (.1 or .11) , assemble any .s and .S files, and
link the object files and libraries into an executable program.

The compiler invocation commands produce threadsafe code.

To compile a C source program, use the following basic invocation syntax:

»—xlc— B B input_file
compiler_option

v
A

To compile a C++ source program, use the following basic invocation syntax:

vy

> x1C input_file <
x1 c++—| I—compi Zer‘_option—|

For most applications, compile with xlc or xlc++,. You can use xlc++ to compile
either C or C++ program source, but compiling C++ files with xlc might result in
link or runtime errors because libraries required for C++ code are not specified
when the linker is called by the C compiler.

More invocation commands are available to meet specialized compilation needs,
primarily to provide explicit compilation support for different levels and
extensions of the C or C++ language. See ['Invoking the compiler'|in the XL C/C++
Compiler Reference for more information about compiler invocation commands
available to you, including special invocations that are intended to assist
developers in migrating from a GNU compilation environment to XL C/C++.

Specifying compiler options
Compiler options perform a variety of functions, such as setting compiler

characteristics, describing the object code to be produced, controlling the diagnostic
messages emitted, and performing some preprocessor functions.

You can specify compiler options in one or any combination of the following ways:
* On the command-line with command-line compiler options

* In your source code using directive statements

* In a makefile

* In the stanzas found in a compiler configuration file

You can also pass compiler options to the linker, assembler, and preprocessor.

20 XL C/C++: Getting Started for Little Endian Distributions

For more information about compiler options and their usage, see
foptions reference'|in the XL C/C++ Compiler Reference .

Priority sequence of compiler options

It is possible for option conflicts and incompatibilities to occur when multiple
compiler options are specified. To resolve these conflicts in a consistent fashion, the
compiler usually applies the following general priority sequence to most options:

1. Directive statements in your source file override command-line settings
2. Command-line compiler option settings override configuration file settings

3. Configuration file settings override default settings

Generally, if the same compiler option is specified more than once on a
command-line when invoking the compiler, the last option specified prevails.

Note: Some compiler options, such as the -I option, do not follow the priority
sequence described above. The compiler searches any directories specified with -I
in the xlc.cfg file before it searches the directories specified with -I on the
command-line. The -I option is cumulative rather than preemptive. Other options
with cumulative behavior are -R and -1 (lowercase L).

XL C/C++ input and output files
These file types are recognized by XL C/C++.

For detailed information about these and additional file types used by the
compiler, see ['Types of input files"|in the XL C/C++ Compiler Reference and
[of output files'|in the XL C/C++ Compiler Reference.

Table 4. Input file types

Filename extension Description

.C C source files

.C, cc, .cp, .cpp, .cxx, .c++ | C++ source files

i Preprocessed source files
Jdi Preprocessed C++ source files
.0 Object files

Assembler files
S Unpreprocessed assembler files
.S0 Shared object or library files

Table 5. Output file types

Filename extension Description
a.out Default name for executable file created by the compiler
d Make dependency file
i Preprocessed source files
Ist Listing files
.0 Object files
s Assembler files
.50 Shared object or library files

Chapter 4. Developing applications with XL C/C++ 21

Linking your compiled applications with XL C/C++

By default, you do not need to do anything special to link an XL C/C++ program.
The compiler invocation commands automatically call the linker to produce an
executable output file.

For example, you can use the following command to compile filel.C and file3.C
to produce the object files filel.o and file3.o. All object files, including file2.o,
are submitted to the linker to produce one executable.

xlct++ filel.C file2.0 file3.C
Compiling and linking in separate steps

To produce object files that can be linked later, use the -c option.

xlc++ -c filel.C # Produce one object file (filel.o)
xlc++ -c file2.C file3.C # Or multiple object files (filel.o, file3.o)
xlc++ filel.o file2.0 file3.o0 # Link object files with default libraries

For more information about compiling and linking your programs, see:

. in the XL C/C++ Compiler Reference

* ['Constructing a library'|in the XL C/C++ Optimization and Programming Guide

Dynamic and static linking

XL C/C++ allows your programs to take advantage of the operating system
facilities for both dynamic and static linking.

Dynamic linking means that the code for some external routines is located and
loaded when the program is first run. When you compile a program that uses
shared libraries, the shared libraries are dynamically linked to your program by
default. Dynamically linked programs take up less disk space and less virtual
memory if more than one program uses the routines in the shared libraries. During
linking, they do not require any special precautions to avoid naming conflicts with
library routines. They are designed to perform better than statically linked
programs if several programs use the same shared routines at the same time. By
using dynamic linking, you can upgrade the routines in the shared libraries
without relinking.

Because this form of linking is the default, you need no additional options to turn
it on.

Static linking means that the code for all routines called by your program becomes
part of the executable file.

Statically linked programs can be moved to run on systems without the XL C/C++
runtime libraries. They might perform better than dynamically linked programs if
they make many calls to library routines or call many small routines. They do
require some precautions in choosing names for data objects and routines in the
program if you want to avoid naming conflicts with library routines. They also
might not work if you compile them on one level of the operating system and run
them on a different level of the operating system.

Running your compiled application

After a program is compiled and linked, you can run the generated executable file
on the command line.

22 XL C/C++: Getting Started for Little Endian Distributions

The default file name for the program executable file produced by the XL C/C++
compiler is a.out. You can select a different name with the -o compiler option.

You should avoid giving your program executable file the same name as system or
shell commands, such as test or cp, as you could accidentally execute the wrong
command. If you do decide to name your program executable file with the same
name as a system or shell command, you should execute your program by
specifying the path name to the directory in which your executable file resides,
such as ./test.

To run a program, enter the name of the program executable file together with any
run time arguments on the command line.

Canceling execution

To suspend a running program, press the Ctr1+Z key while the program is in the
foreground. Use the fg command to resume running.

To cancel a running program, press the Ctr1+C key while the program is in the
foreground.

Setting runtime options

You can use environment variable settings to control certain runtime options and
behaviors of applications created with the XL C/C++ compiler. Some environment
variables do not control actual runtime behavior, but they can have an impact on
how your applications run.

For more information on environment variables and how they can affect your
applications at run time, see the XL C/C++ Installation Guide.

Running compiled applications on other systems
If you want to run an application developed with the XL C/C++ compiler on
another system that does not have the compiler installed, you need to install a

runtime environment on that system or link your application statically.

You can obtain the latest XL C/C++ Runtime Environment PTF images, together
with licensing and usage information, from the [XL C/C++ for Linux support pagel

XL C/C++ compiler diagnostic aids

XL C/C++ issues diagnostic messages when it encounters problems compiling
your application. You can use these messages and other information provided in
compiler output listings to help identify and correct such problems.

For more information about listing, diagnostics, and related compiler options that
can help you resolve problems with your application, see the following topics in
the XL C/C++ Compiler Reference:

+ ['Compiler messages and listings'|

* |'Error checking and debugging options'|

+ ['Listings, messages, and compiler information options'|

Debugging compiled applications
You can use a symbolic debugger to debug applications compiled with XL C/C++.

Chapter 4. Developing applications with XL C/C++ 23

http://www.ibm.com/support/entry/portal/overview/software/rational/xl_c~c++_for_linux

At compile time, you can use the -g or -qlinedebug option to instruct the XL
C/C++ compiler to include debugging information in compiled output. For -g, you
can also use different levels to balance between debug capability and compiler
optimization. For more information about the debugging options, see
[checking and debugging'|in the XL C/C++ Compiler Reference.

You can then use gdb or any other symbolic debugger to step through and inspect
the behavior of your compiled application.

Optimized applications pose special challenges when debugging. For more
information about optimizing your code, see ['Optimizing your applications'|in the
XL C/C++ Optimization and Programming Guide.

Determining which level of XL C/C++ is being used

To display the version and release level of XL C/C++ that you are using, invoke
the compiler with the --version (-qversion) compiler option.

For example, to obtain detailed version information, enter the following command:

xlct+ --version

24 XL C/C++: Getting Started for Little Endian Distributions

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2014 25

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director

IBM Canada Ltd. Laboratory
8200 Warden Avenue
Markham, Ontario L6G 1C7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM's application programming interfaces.

26 XL C/C++: Getting Started for Little Endian Distributions

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1998, 2014.

Trademarks and service marks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at|‘Copyright and|
[trademark information”| at |http:/ /www.ibm.com /legal / copytrade.shtml|

Adobe and the Adobe logo are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 27

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

28 XL C/C++: Getting Started for Little Endian Distributions

Index

Special characters

.a files 21

.cand .C files 21
i files 21

Ai files 21

Ist files 21

.mod files 21

.o files 21

s files 21

.S files 21

.so files 21

A

archive files 21

assembler
source (.s) files 21
source (.S) files 21

basic example, described viii

C

C++ templates 15
code optimization 6
compilation
sequence of activities 19
compiler
controlling behavior of 20
invoking 20
running 20
compiler options
conflicts and incompatibilities 21
specification methods 20
customization
for compatibility with GNU 3

D

debugger support 24

output listings 23

symbolic 7
debugging 24
debugging compiled applications 23
debugging information, generating 23
dynamic linking 22

E

editing source files 19
executable files 21
executing a program 23
executing the linker 22

© Copyright IBM Corp. 1996, 2014

F

files
editing source 19
input 21
output 21

G

GCC options 9
GCC pragmas 15
GNU
compatibility with 3, 9

input files 21

invocation commands 20
invoking a program 23
invoking the compiler 20

L

language standards 3
language support 3

level of XL C/C++, determining 24

libraries 21

linking
dynamic 22
static 22

linking process 22
listings 21

M

macros 15
migration
source code 20

O

object files 21
creating 22
linking 22

optimization
programs 6

output files 21

P

performance

optimizing transformations
problem determination 23
programs

running 23

R

running the compiler 20
runtime

libraries 21
runtime environment 23
runtime options 23

S

shared object files 21
source files 21

source-level debugging support 7

static linking 22
symbolic debugger support

7

T

tools 5

U

cleanpdf utility 5

install configuration utility 5
install utility 5

mergepdf utility 5

resetpdf utility 5

showpdf utility 5

utilities 5

X

xle.

cleanpdf 5
install 5
mergepdf 5
resetpdf 5
showpdf 5

cfg file 20

30 XLC/C++: Getting Started for Little Endian Distributions

Product Number: 5765-J08; 5725-C73

Printed in USA

GI13-2875-00

	Contents
	About this document
	Conventions
	Related information
	IBM XL C/C++ information
	Standards and specifications
	Other IBM information
	Other information

	Technical support
	How to send your comments

	Chapter 1. Introducing XL C/C++
	Commonality with other IBM compilers
	Operating system and hardware support
	A highly configurable compiler
	Language standard compliance
	Compatibility with GNU
	Source-code migration and conformance checking

	Libraries
	Tools, utilities, and commands
	Advance Toolchain 8.0 support
	Program optimization
	Diagnostic listings
	Symbolic debugger support

	Chapter 2. Migrating to IBM XL C/C++ for Linux, V13.1.1
	Migrating from big endian Linux to little endian Linux
	Compiler options
	Supported GCC options
	-q options not available

	Template model
	Changes in predefined macro support
	Compiler pragmas

	Chapter 3. Setting up and customizing XL C/C++
	Using custom compiler configuration files

	Chapter 4. Developing applications with XL C/C++
	The compiler phases
	Editing C/C++ source files
	Compiling with XL C/C++
	Invoking the compiler
	Specifying compiler options
	XL C/C++ input and output files

	Linking your compiled applications with XL C/C++
	Dynamic and static linking

	Running your compiled application
	XL C/C++ compiler diagnostic aids
	Debugging compiled applications
	Determining which level of XL C/C++ is being used

	Notices
	Trademarks and service marks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	O
	P
	R
	S
	T
	U
	X

