IBM XL C/C++ for Linux, V13.1.1

Compiler Reference
for Little Endian Distributions

Version 13.1.1

<|lI!

SC27-6570-00

IBM XL C/C++ for Linux, V13.1.1

Compiler Reference
for Little Endian Distributions

Version 13.1.1

<|lI!

SC27-6570-00

Note
FBefore using this information and the product it supports, read the information in ['Notices” on page 365]

First edition

This edition applies to IBM XL C/C++ for Linux, V13.1.1 (Program 5765-J08; 5725-C73) and to all subsequent
releases and modifications until otherwise indicated in new editions. Make sure you are using the correct edition
for the level of the product.

© Copyright IBM Corporation 1996, 2014.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information. vii

Who should read this information. vii
How to use this information vii
How this information is organizedvii
Conventions.vii
Related information. . . FE O < |
IBM XL C/C++ mformatlon Lxi
Standards and specifications.xii
Other IBM informationxii
Other informationxii
Technical support xii
How to send your comments xii

Chapter 1. Complllng and I|nk|ng

applications . 1
Invoking the compiler . 1
Command-line syntax . 2
Types of input files . NG
Types of output files.4
Specifying compiler options .4
Specifying compiler options on the command hne 5
Specifying compiler options in a configuration file 5
Specifying compiler options in program source

files .. 5
Resolving confhctmg compller optlons6
Preprocessing . 7
Directory search sequence for 1nclude f1les 8
Linking . . e e o9
Order of hnkmg P (0]
Redistributable libraries10
Compiler messages and listings.11
Compiler messages.1
Compiler return codes.12
Compiler listings13
Paging space errors durmg compﬂatlon e

Chapter 2. Configuring compller
defaults

Setting environment Varlables .o A V4
Compile-time and link-time env1ronment
variables . . . B £
Runtime env1ronment varlables18

Using custom compiler configuration files19
Creating custom configuration files20
Using IBM XL C/C++ for Linux, V13.1.1 with the
Advance Toolchain.23

Chapter 3. Compiler options reference 25

Supported GCC options25

Summary of compiler options by functlonal

category . . 4"
Output control L)
Input control31
Language element control31

© Copyright IBM Corp. 1996, 2014

Template control (C++ only).
Floating-point and integer control .
Object code control . .
Error checking and debuggmg

Listings, messages, and compiler mformatlon .

Optimization and tuning .

Linking.

Portability and mlgratlon
Compiler customization .

Individual option descriptions .

-##H# (#) (pound sign) .

-+ (plus sign) (C++ only) .
--help (-qhelp)

--version (-qversion)

@file (- qoptﬁle)

-B . .

-C, -C! .

-D

-E

-F.

-I.

L.

-0, -qophmlze

-P

R

-S.

U .

XEW). oo

-Werror (-ghalt) .

-Cc. .

-dM (- qshowmacros)

.. . . .

-fasm (- qasm)

-fcommon (-qcommon) .
-fdollars-in-identifiers (- qdollar)

-fdump-class-hierarchy (- qdump_class hlerarchy)

(C++ only).

-finline-functions (- thne)

-fPIC (-gpic) . .

-fpack-struct (-qalign) . .
-fsigned-char, -funsigned-char (- qchars)
-fstrict-aliasing (-qalias=ansi), -qalias .
-fsyntax-only (-gsyntaxonly) (C only) .

-ftemplate-depth (-qtemplatedepth) (C++ only)

-ftrapping-math (-qflttrap)

-ftls-model (-qtls)

-ftime-report (-qphsinfo) . .
-funroll-loops (-qunroll), -funroll- all loops
(-qunroll=yes)

-fvisibility (- qV151b111ty)

g .

-mclude (- qmclude)

-isystem (-qc_stdinc) (C only)

-isystem (-qcpp_stdinc) (C++ only)
-isystem (-qgcc_c_stdinc) (C only) .
-isystem (-qgcc_cpp_stdinc) (C++ only) .

S
-maltivec (-qaltivec)
-mcpu (-qarch) .
-mtune (-qtune)

o ...
-p, -pg, -qprofile
-qaggreopy -
-qasm_as .

-qcache

-qcheck

-qcompact .
-qert, -nostartfiles (- qnocrt)

-qdataimported, -qdatalocal, —qtocdata .

-qdirectstorage .

-qeh (C++ only)

-gfloat .

-qfullpath

-ghot .

-gignerrno

-qginitauto.

-qginlglue .

-qipa . .

-qisolated_ call .

-gkeepparm .

-qlib, —nodefaulthbs (qnohb)
-qlibansi .

-glinedebug .

-qlist

-qgmaxmem .

-qmakedep, -MD (- qmakedep gcc)
-qpath. .o .
-qpdfl, -qpdf2 .

-qprefetch

-qpriority (C++ only)

-qreport . .
-qreserved_reg .

-qro

-qroconst .

-qrtti, -fno-rtti (- qnortt1) (C++ only)
-gsaveopt. o
-qshowpdf

-qsimd

-gsmallstack .

-gspill . .

-gstaticinline (C++ only)

-gstdinc, -qnostdinc (-nostdinc, -nostd1nc++)

-qstrict .
-gstrict_induction .
-qtimestamps .
-qtmplinst (C++ only)
-qunwind. .
-1
S
-shared (-qmkshrobj) .
-static (-gstaticlink)

-std (-qlanglvl) .
st

-v,-V .
WL
-Wunsupported-xl-macro
-x (-gsourcetype)

.99
. 100
. 101
. 103
. 105
. 106
. 107
. 107
. 108
. 111
. 114
. 114
. 115
. 116
. 117
. 118
. 121
. 122
. 125
. 125
. 128
. 129
. 134
. 135
. 136
. 137
. 138
. 139
. 140
. 141
. 143
. 144
. 152
. 155
. 156
. 157
. 158
. 160
. 161
. 162
. 164
. 165
. 166
. 167
. 168
. 169
. 170
. 174
. 175
. 175
. 176
. 177
. 177
. 178
. 180
. 182
. 185
. 186
. 187
. 188
. 189

iV XL C/C++: Compiler Reference for Little Endian Distributions

y

Chapter 4. Compiler pragmas

reference .

Pragma directive syntax.

Scope of pragma directives .

Supported GCC pragmas

Supported IBM pragmas
#pragma disjoint .
#pragma execution_frequency .
#pragma ibm independent_ loop .
#pragma nosimd .
#pragma option_override
#pragma pack .
#pragma reachable
#pragma simd_level .
#pragma STDC CX_LIMITED_ RANGE
#pragma unroll, #pragma nounroll .
#pragma weak .

Chapter 5. Compller predefmed

macros .

General macros.

Macros indicating the XL C / C++ compﬂer

Macros related to the platform

Macros related to compiler features . .
Macros related to compiler option settings.
Macros related to architecture settings .
Macros related to language levels .

Unsupported macros from other XL compilers

Chapter 6. Compiler built-in functions
Fixed-point built-in functions .
Absolute value functions
Assert functions
Bit permutation funct10ns
Comparison functions
Count zero functions .
Division functions.
Load functions .
Multiply functions. .
Population count functions .
Rotate functions
Store functions .
Trap functions . .
Binary floating-point bu1lt—1n functlons
Absolute value functions
Conversion functions.
FPSCR functions .
Multiply-add/subtract funct1ons .
Reciprocal estimate functions .
Rounding functions
Select functions.
Square root functions.
Software division functions.
Store functions .
Binary-coded decimal bu1lt—1n funct1ons
BCD add and subtract
BCD test add and subtract for overflow
BCD comparison .

. 190

. 193
. 193
. 193
. 194
. 194
. 195
. 196
. 197
. 198
. 199
. 200
. 204
. 204
. 205
. 206
. 208

. 21
.21
. 212
. 213
. 214
. 214
. 216
. 217
. 218

221

. 221
. 222
. 222
. 222
. 222
. 223
. 223
. 224
. 225
. 225
. 226
. 228
. 228
. 229
. 229
. 230
. 232
. 234
. 235
. 236
. 237
. 237
. 238
. 238
. 239
. 239
. 240
. 240

BCD load and store 241 vecetf288

Synchronization and atomic bu11t—1n functlons .. 242 vec_cts L0289
Check lock functions242 vecctsl28
Clear lock functions243 vecctu29
Compare and swap functions244 vecctul29
Fetch functions.245 vecevf29
Load functions.246 vecdiv29
Store functions . . . o247 vec_eqvo 292
Synchronization functlons o.248 vec_extract293

Cache-related built-in functions249 vec_floor.29
Data cache functions249 vecghbb2%
Prefetch built-in functions 251 vec_insert29

Cryptography built-in functions 252 vecIld.2%
Advanced Encryption Standard functlons .. . 252 veclvsl297
Secure Hash Algorithm functions. 254 vec_lvsr L. L297
Miscellaneous functions.255 veccmadd298

Block-related built-in functions257 vec.max o299
_bcopy 257 vec_mergeh300

Vector built-in functions.257 vec_mergel300
veccabs258 vec_min30
vecadd259 vecmsub30
vecadd_ul2825 veemul303
vec_addc_ul28.260 vecnabs.304
vec_adde ul28.260 vecnand.304
vec_addec_ ul28261 vec_nearbyint305
vecalleq261 vecneg306
vecallge262 vecnmadd307
vecall gt263 vecnmsub307
vecallle.264 vec_nor308
vecall 1t.265 VEC_Or.o.o.o.o.o.309
vecallnan266 Vec_orc310
vecallne267 vecpack.31
vecallnge268 vec_packs312
vecallngt269 vec_packsu312
vecallnle269 vec_perm.313
vecallnlt270 vec_popent314
vec_all numeric270 vec_promote.315
vecand21 vec_re.36
vecandc.272 vec_recipdiv.316
vecany_eq273 vecrevb317
vec_any_ge27/4 vec_reve o.317
vecany_gt275 vecrint318
vecanyle276 vecrl.318
vecany It277 vecround319
vec_any_ nan278 vecrounde319
vec_any_ne279 vec_roundm.32
vec_any_nge.280 vecroundp320
vec_any_ngt.281 vecroundz321
vec_any.nle.281 vec_rsqrt.32
vecanynlt.28 vec_rsqrte322
vec_any_numeric282 vecsel L L. L. L322
vec_bperm283 vecsl.323
vecceil283 vecsldw.324
vec.empeq283 vecsplat.32
vec_cmpge 284 vecsplats32
vec_empgt28 vec_sqrt32
vec_emple286 VeC_Sr. L0327
vecemplt286 vec_sra o.o.o.o.0.327
vecentlz.,287 vecst.328
vec_epsgn288 vecsub32
vecetd288 vec_sub_ ul2833

Contents V

vec_subc_ul2833

vec_sube ul28331
vec_subec_ul28331
vec_trunc.33
vecunpackh332
vecunpackl.333
vecvelz333
vecvgbbd334
veexl.3%4
vecxlbe.33
vecxld233
veexlds337
veexlwd.338
vec_xor338
vecxst340
vecxstbe340
vec_xstd2.34
vec_xstwd . . . 342
GCC atomic memory access bullt—m functlons (IBM
extension)343
vi XL C/C++: Compiler Reference for Little Endian Distributions

Atomic lock, release, and synchronize functions 344
Atomic fetch and operation functions . 345
Atomic operation and fetch functions . 348
Atomic compare and swap functions . 351
Miscellaneous built-in functions . . 352
Optimization-related functions . 352
Move to/from register functions . . 353
Memory-related functions . . 354
Transactional memory built-in functlons . 357
Transaction begin and end functions. . 357
Transaction abort functions. . 359
Transaction inquiry functions . . 359
Transaction resume and suspend functlons . 363
Notices . . . 365
Trademarks and service marks . 367
Index . . 369

About this information

This information is a reference for the IBM® XL C/C++ for Linux, V13.1.1 compiler.
Although it provides information on compiling and linking applications written in
C and C++, it is primarily intended as a reference for compiler command-line
options, pragma directives, predefined macros, built-in functions, environment
variables, error messages and return codes.

Who should read this information

This information is for experienced C or C++ developers who have some
familiarity with the XL C/C++ compilers or other command-line compilers on
Linux operating systems. It assumes thorough knowledge of the C or C++
programming language, and basic knowledge of operating system commands.
Although this information is intended as a reference guide, programmers new to
XL C/C++ can still find information in it on the capabilities and features unique to
the XL C/C++ compiler.

How to use this information

Unless indicated otherwise, all of the text in this reference pertains to both C and
C++ languages. Where there are differences between languages, these are indicated
through qualifying text and icons, as described in [“Conventions” on page viii/

Throughout this manual, the xlc and xlc++ command invocations are used to
describe the actions of the compiler. You can, however, substitute other forms of
the compiler invocation command if your particular environment requires it, and
compiler option usage will remain the same unless otherwise specified.

While this information covers topics on configuring the compiler environment, and
compiling and linking C or C++ applications using the XL C/C++ compiler, it does
not include the following topics:

* Compiler installation: see the XL C/C++ Installation Guide for information on
installing XL C/C++.

* The C or C++ programming languages: see the XL C/C++ Language Reference for
information on the syntax, semantics, and IBM implementation of the C or C++
IBM extension features. See C/C++ standards for the details of standard
features.

* Programming topics: see the XL C/C++ Optimization and Programming Guide for
detailed information on developing applications with XL C/C++, with a focus
on program portability and optimization.

How this information is organized

[Chapter 1, “Compiling and linking applications,” on page 1| discusses topics related
to compilation tasks, including invoking the compiler, preprocessor, and linker;
types of input and output files; different methods for setting include file path
names and directory search sequences; different methods for specifying compiler
options and resolving conflicting compiler options; and compiler listings and
messages.

© Copyright IBM Corp. 1996, 2014 vii

[Chapter 2, “Configuring compiler defaults,” on page 17] discusses topics related to
setting up default compilation settings, including setting environment variables
and customizing the configuration file.

[Chapter 3, “Compiler options reference,” on page 25 begins with a list of GCC
supported options, which are sorted alphabetically. Then it introduces a summary
of options according to functional category, which you can look up and link to
options by function; and it includes individual descriptions of each compiler
option sorted alphabetically.

[Chapter 4, “Compiler pragmas reference,” on page 193|introduces a list of GCC
supported pragmas and IBM supported pragmas, which are sorted alphabetically.
For IBM supported pragmas, detailed descriptions are introduced.

[Chapter 5, “Compiler predefined macros,” on page 211 provides a list of compiler
macros grouped according to category. It also provides a list of compiler macros
that might be supported by other XL compilers, but are not supported in IBM® XL
C/C++ for Linux, V13.1.1.

[Chapter 6, “Compiler built-in functions,” on page 221| contains individual
descriptions of XL C/C++ built-in functions for Power® architectures, categorized
by their functionality.

Conventions
Typographical conventions
The following table shows the typographical conventions used in the IBM XL
C/C++ for Linux, V13.1.1 information.
Table 1. Typographical conventions
Typeface Indicates Example
bold Lowercase commands, executable | The compiler provides basic
names, compiler options, and invocation commands, xlc and x1C
directives. (xlc++), along with several other
compiler invocation commands to
support various C/C++ language
levels and compilation environments.
italics Parameters or variables whose Make sure that you update the size
actual names or values are to be parameter if you return more than
supplied by the user. Italics are the size requested.
also used to introduce new terms.
underlining The default setting of a parameter |nomaf | maf
of a compiler option or directive.
monospace Programming keywords and To compile and optimize
library functions, compiler builtins, | myprogram.c, enter: x1c myprogram.c
examples of program code, -03.
command strings, or user-defined
names.
viii XL C/C++: Compiler Reference for Little Endian Distributions

Qualifying elements (icons)

Most features described in this information apply to both C and C++ languages. In
descriptions of language elements where a feature is exclusive to one language, or
where functionality differs between languages, this information uses icons to
delineate segments of text as follows:

Table 2. Qualifying elements

Qualifier/Icon

Meaning

C only, or C only begins

HH

C only ends

The text describes a feature that is supported in the C language
only; or describes behavior that is specific to the C language.

C++ only, or C++ only
begins
C++

C++

C++ only ends

The text describes a feature that is supported in the C++
language only; or describes behavior that is specific to the C++
language.

IBM extension, or IBM
extension begins

IBM extension ends

The text describes a feature that is an IBM extension to the
standard language specifications.

C11, or C11 begins

C11 ends

The text describes a feature that is introduced into standard C
as part of C11.

C++11, or C++11 begins

The text describes a feature that is introduced into standard
C++ as part of C++11.

Syntax diagrams

Throughout this information, diagrams illustrate XL C/C++ syntax. This section
will help you to interpret and use those diagrams.

* Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.

The »—— symbol indicates the beginning of a command, directive, or statement.

The — symbol indicates that the command, directive, or statement syntax is
continued on the next line.

The »— symbol indicates that a command, directive, or statement is continued

from the previous line.

The —><« symbol indicates the end of a command, directive, or statement.

About this information 1X

Fragments, which are diagrams of syntactical units other than complete
commands, directives, or statements, start with the |— symbol and end with
the —| symbol.

* Required items are shown on the horizontal line (the main path):

v
A

»»—keyword—required_argument

* Optional items are shown below the main path:

»»—keyword ><
|—opt ional_argumen t—l

* If you can choose from two or more items, they are shown vertically, in a stack.

If you must choose one of the items, one item of the stack is shown on the main
path.

»»—keyword required_argumentl > <
|:requ ired_argumen t2—|

If choosing one of the items is optional, the entire stack is shown below the
main path.

»»—keyword <
i:zpt ional_argument]:l
ptional_argument2

* An arrow returning to the left above the main line (a repeat arrow) indicates
that you can make more than one choice from the stacked items or repeat an
item. The separator character, if it is other than a blank, is also indicated:

»>—keyword—Y

repeatable_argument ><

* The item that is the default is shown above the main path.

efault_argumen t—l
»>—keyword lternate_argument

v
A

* Keywords are shown in nonitalic letters and should be entered exactly as shown.

* Variables are shown in italicized lowercase letters. They represent user-supplied
names or values.

* If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

Examples in this information
The examples in this information, except where otherwise noted, are coded in a
simple style that does not try to conserve storage, check for errors, achieve fast

performance, or demonstrate all possible methods to achieve a specific result.

The examples for installation information are labelled as either Example or Basic
example. Basic examples are intended to document a procedure as it would be

X XL C/C++: Compiler Reference for Little Endian Distributions

performed during a basic, or default, installation; these need little or no
modification.

Related information

The following sections provide related information for XL C/C++:

IBM XL C/C++ information

XL C/C++ provides product information in the following formats:

* README files
READMEE files contain late-breaking information, including changes and
corrections to the product information. README files are located by default in
the XL C/C++ directory, and in the root directory and subdirectories of the
installation DVD.

¢ Installable man pages

Man pages are provided for the compiler invocations and all command-line
utilities provided with the product. Instructions for installing and accessing the
man pages are provided in the IBM XL C/C++ for Linux, V13.1.1 Installation
Guide.

* Online product documentation

The fully searchable HTML-based documentation is viewable in IBM Knowledge
Center at |http:/ /www.ibm.com/support/knowledgecenter/SSXVZZ_13.1.1/|
[com.ibm.compilers.linux.doc/welcome.html|

¢ PDF documents

PDF documents are available on the web at |http:/ /www.ibm.com /support /|
[docview.wss?uid=swg27036675!

The following files comprise the full set of XL C/C++ product information:

Table 3. XL C/C++ PDF files

PDF file
Document title name Description
IBM XL C/C++ for Linux, |install.pdf Contains information for installing XL C/C++
V13.1.1 Installation Guide, and configuring your environment for basic
GC27-6540-00 compilation and program execution.
Getting Started with IBM | getstart.pdf |Contains an introduction to the XL C/C++
XL C/C++ for Linux, product, with information on setting up and
V13.1.1, GI13-2875-00 configuring your environment, compiling and

linking programs, and troubleshooting
compilation errors.

IBM XL C/C++ for Linux, |compiler.pdf |Contains information about the various
V13.1.1 Compiler Reference, compiler options, pragmas, macros,
SC27-6570-00 environment variables, and built-in functions.

IBM XL C/C++ for Linux, |langref.pdf Contains information about language extensions

V13.1.1 Language Reference, for portability and conformance to
S5C27-6550-00 nonproprietary standards.

IBM XL C/C++ for Linux, |proguide.pdf | Contains information on advanced

V13.1.1 Optimization and programming topics, such as application
Programming Guide, porting, interlanguage calls with Fortran code,
5C27-6560-00 library development, application optimization,

and the XL C/C++ high-performance libraries.

To read a PDF file, use Adobe Reader. If you do not have Adobe Reader, you

About this information X1

http://www.ibm.com/support/knowledgecenter/SSXVZZ_13.1.1/com.ibm.compilers.linux.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/SSXVZZ_13.1.1/com.ibm.compilers.linux.doc/welcome.html
http://www.ibm.com/support/docview.wss?uid=swg27036675
http://www.ibm.com/support/docview.wss?uid=swg27036675

can download it (subject to license terms) from the Adobe website at
[http:/ /www.adobe.com|

More information related to XL C/C++ including IBM Redbooks® publications,
white papers, tutorials, documentation errata, and other articles, is available on the
web at:

[http:/ /www.ibm.com /support/docview.wss?uid=swg27036675|

For more information about boosting performance, productivity, and portability,
see the C/C++ café at |https:/ /www.ibm.com/developerworks /community /|

roups/service/html/ Communityview?communityUuid:5894415f—be62—4bc0—81c5—|
3956822763

Standards and specifications

XL C/C++ is designed to support the following standards and specifications. You
can refer to these standards for precise definitions of some of the features found in
this information.

* Information Technology - Programming languages - C, ISO/IEC 9899:1990, also
known as C89.

* Information Technology - Programming languages - C, ISO/IEC 9899:1999, also
known as C99.

* Information Technology - Programming languages - C, ISO/IEC 9899:2011, also
known as CI1. (Partial support)

* Information Technology - Programming languages - C++, ISO/IEC 14882:1998, also
known as C++98.

* Information Technology - Programming languages - C++, ISO/IEC 14882:2003, also
known as Standard C++.

* Information Technology - Programming languages - C++, ISO/IEC 14882:2011, also
known as C++11. (Partial support)

* Information Technology - Programming languages - Extensions for the programming
language C to support new character data types, ISO/IEC DTR 19769. This draft
technical report has been accepted by the C standards committee, and is
available at |http://www.open-std.org /JTC1/SC22/WG14/www /docs/|

|1_11040.Edﬂ

* AltiVec Technology Programming Interface Manual, Motorola Inc. This specification
for vector data types, to support vector processing technology, is available at
Ihttp: / /www.freescale.com/files/32bit/doc/ref_manual/ ALTIVECPIM.pdﬂ

* ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.

Other IBM information

* ESSL product documentation available at Ihttp: / /www.ibm.com /support/ |
[knowledgecenter/SSFHYS / essl_welcome. html|

Other information
« Using the GNU Compiler Collection available at fhttp://gcc.gnu.org/onlinedocs|

xii XL C/C++: Compiler Reference for Little Endian Distributions

http://www.adobe.com
http://www.ibm.com/support/docview.wss?uid=swg27036675
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1040.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1040.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf
http://www.ibm.com/support/knowledgecenter/SSFHY8/essl_welcome.html
http://www.ibm.com/support/knowledgecenter/SSFHY8/essl_welcome.html
http://gcc.gnu.org/onlinedocs

Technical support

Additional technical support is available from the XL C/C++ Support page at
http:/ /www.ibm.com /support/entry/portal /overview /software /rational /|
X_c~c++_for_linux| This page provides a portal with search capabilities to a large
selection of Technotes and other support information.

If you cannot find what you need, you can send email to compinfo@cn.ibm.com.

For the latest information about XL C/C++, visit the product information site at
Ihttp: / /www.ibm.com/software/products/us/en/xlcpp-linux/ l

How to send your comments

Your feedback is important in helping to provide accurate and high-quality
information. If you have any comments about this information or any other XL
C/C++ information, send your comments by email to compinfo@cn.ibm.com.

Be sure to include the name of the manual, the part number of the manual, the

version of XL C/C++, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).

About this information xiii

http://www.ibm.com/support/entry/portal/overview/software/rational/xl_c~c++_for_linux
http://www.ibm.com/support/entry/portal/overview/software/rational/xl_c~c++_for_linux
http://www.ibm.com/software/products/us/en/xlcpp-linux/

xiv XL C/C++: Compiler Reference for Little Endian Distributions

Chapter 1. Compiling and linking applications

By default, when you call the XL C/C++ compiler, all of the following phases of
translation are performed:

* preprocessing of program source
* compiling and assembling into object files
* linking into an executable

These different translation phases are actually performed by separate executables,
which are referred to as compiler components. However, you can use compiler
options to perform only certain phases, such as preprocessing, or assembling. You
can then reinvoke the compiler to resume processing of the intermediate output to
a final executable.

The following sections describe how to invoke the XL C/C++ compiler to
preprocess, compile and link source files and libraries:

+ [“Invoking the compiler”]

+ [“Types of input files” on page 3|

+ [“Types of output files” on page 4|

* |“Specifying compiler options” on page 4|

* [“Preprocessing” on page 7|

+ [“Linking” on page 9|

+ “Compiler messages and listings” on page 11|

Invoking the compiler

Different forms of the XL C/C++ compiler invocation commands support various
levels of the C and C++ languages. In most cases, you should use the xlc
command to compile your C source files, and the xlc++ command to compile C++
source files. Use xlc++ to link if you have both C and C++ object files.

These invocations allow for threadsafe compilation. You can use them to link the
programs that use multi-threading.

Note: For each invocation command, the compiler configuration file defines
default option settings and, in some cases, macros; for information about the
defaults implied by a particular invocation, see the /opt/ibm/xIC/13.1.1/etc/
xlc.cfg.$OSRelease.gcc$gecVersion file for your system. For example,
/opt/ibm/x1C/13.1.1/etc/xlc.cfg.sles.12.gcc.4.8.2 or /opt/ibm/xIC/13.1.1/etc/
xlc.cfg.ubuntu.14.04.gcc.4.8.2.

Table 4. Compiler invocations

Basic invocations Description

xle Invokes the compiler for C source files. This command supports all of the ISO
C99 standard features, and most IBM language extensions. This invocation is
recommended for all applications.

c99 Invokes the compiler for C source files. This command supports all ISO C99
language features, but does not support IBM language extensions. Use this
invocation for strict conformance to the C99 standard.

c89 Invokes the compiler for C source files. This command supports all ANSI C89
language features, but does not support IBM language extensions. Use this
invocation for strict conformance to the C89 standard.

© Copyright IBM Corp. 1996, 2014

Table 4. Compiler invocations (continued)

Basic invocations

Description

CcC

Invokes the compiler for C source files. This command supports pre-ANSI C, and
many common language extensions. You can use this command to compile
legacy code that does not conform to standard C.

xle++, xIC

Invokes the compiler for C++ source files. If any of your source files are C++,
you must use this invocation to link with the correct runtime libraries.

Files with .c suffixes, assuming you have not used the -+ compiler option, are
compiled as C language source code.

Related information
* |“-std (-glanglvl)” on page 182

Command-line syntax

You invoke the compiler using the following syntax, where invocation can be
replaced with any valid XL C/C++ invocation command listed in [Table 4 on page]

»—invocation—Y

input_files >
|—command_l ine_opt ionsJ

The parameters of the compiler invocation command can be the names of input
files, compiler options, and linker options.

Your program can consist of several input files. All of these source files can be
compiled at once using only one invocation of the compiler. Although more than
one source file can be compiled using a single invocation of the compiler, you can
specify only one set of compiler options on the command line per invocation. Each
distinct set of command-line compiler options that you want to specify requires a
separate invocation.

Compiler options perform a wide variety of functions, such as setting compiler
characteristics, describing the object code and compiler output to be produced, and
performing some preprocessor functions.

By default, the invocation command calls both the compiler and the linker. It passes
linker options to the linker. Consequently, the invocation commands also accept all
linker options. To compile without linking, use the -c¢ compiler option. The -c
option stops the compiler after compilation is completed and produces as output,
an object file file_name.o for each file_name.nnn input source file, unless you use the
-0 option to specify a different object file name. The linker is not invoked. You can
link the object files later using the same invocation command, specifying the object
files without the -c option.

Related information
* [“Types of input files” on page 3|

2 XL C/C++: Compiler Reference for Little Endian Distributions

Types of input files

The compiler processes the source files in the order in which they are displayed. If
the compiler cannot find a specified source file, it produces an error message and
the compiler proceeds to the next specified file. However, the linker does not run
and temporary object files are removed.

By default, the compiler preprocesses and compiles all the specified source files.
Although you usually want to use this default, you can use the compiler to
preprocess the source file without compiling; see [“Preprocessing” on page 7] for
details.

You can input the following types of files to the XL C/C++ compiler:

C and C++ source files
These are files containing C or C++ source code.

To use the C compiler to compile a C language source file, the source file
must have a .c (lowercase c) suffix, unless you compile with the -x ¢
option.

To use the C++ compiler, the source file must have a .C (uppercase C), .cc,
.Cp, .Cpp, -€xX, or .c++ suffix, unless you compile with the -x c++ option.

Preprocessed source files
Preprocessed files are useful for checking macros and preprocessor
directives. Preprocessed C source files have a .1 suffix and preprocessed
C++ source files have a .11 suffix, for example, file_name.i and
file_name.ii. The compiler sends the preprocessed source file,
file_name.i or file_name.ii, to the compiler where it is preprocessed
again in the same way as a .c or .C file.

Object files
Object files must have a .o suffix, for example, file_name.o. Object files,
library files, and unstripped executable files serve as input to the linker.
After compilation, the linker links all of the specified object files to create
an executable file.

Assembler files
Assembler files must have a .s suffix, for example, file_name.s, unless you
compile with the -x assembler option. Assembler files are assembled to
create an object file.

Unpreprocessed assembler files
Unpreprocessed assembler files must have a .S suffix, for example,
file_name.S, unless you compile with the -x assembler-with-cpp option.
The compiler compiles all source files with a .S extension as if they are
assembler language source files that need preprocessing.

Shared library files
Shared library files generally have a .a suffix, for example, file_name.a,
but they can also have a .so suffix, for example, file_name.so.

Unstripped executable files
Executable and linking format (ELF) files that have not been stripped with
the operating system strip command can be used as input to the compiler.

Related information
+ [“Input control” on page 31|

Chapter 1. Compiling and linking applications 3

Types of output files

You can specify the following types of output files when invoking the XL C/C++
compiler:

Executable files
By default, executable files are named a.out. To name the executable file
something else, use the -o file_name option with the invocation command.
This option creates an executable file with the name you specify as
file_name. The name you specify can be a relative or absolute path name for
the executable file.

Object files
If you specify the -c option, an output object file, file_name.o, is produced
for each input file. The linker is not invoked, and the object files are placed
in your current directory. All processing stops at the completion of the
compilation. The compiler gives object files a .o suffix, for example,
file_name.o, unless you specify the -o file_name option, giving a different
suffix or no suffix at all.

You can link the object files later into a single executable file by invoking
the compiler.

Shared library files
If you specify the -shared (-gmkshrobj) option, the compiler generates a
single shared library file for all input files. The compiler names the output
file a.out, unless you specify the -o file_name option, and give the file a .so
suffix.

Assembler files
If you specify the -S option, an assembler file, file_name.s, is produced for
each input file.

You can then assemble the assembler files into object files and link the
object files by reinvoking the compiler.

Preprocessed source files
If you specify the -P option, a preprocessed source file, file_name.i, is
produced for each input file.

You can then compile the preprocessed files into object files and link the
object files by reinvoking the compiler.

Listing files
If you specify any of the listing-related options, such as -qlist, a compiler
listing file, file_name.lst, is produced for each input file. The listing file is
placed in your current directory.

Target files
If you specify the -qmakedep, -MD, or -MMD option, a target file suitable for
inclusion in a makefile, file_name.d is produced for each input file.

Related information
* [“Output control” on page 29|

Specifying compiler options

Compiler options perform a wide variety of functions, such as setting compiler
characteristics, describing the object code and compiler output to be produced, and
performing some preprocessor functions. You can specify compiler options in one
or more of the following ways:

4 XL C/C++: Compiler Reference for Little Endian Distributions

* |On the command line|

* [In a custom configuration file] which is a file with a .cfg extension

+ [In your source program|

* |As system environment variables|

¢ In a makefile

The compiler assumes default settings for most compiler options not explicitly set
by you in the ways listed above.

When specifying compiler options, it is possible for option conflicts and
incompatibilities to occur. The XL C/C++ compiler resolves most of these conflicts
and incompatibilities in a consistent fashion, as follows:

In most cases, the compiler uses the following order in resolving conflicting or
incompatible options:

1. Pragma statements in source code override compiler options specified on the
command line.

2. Compiler options specified on the command line override compiler options
specified as environment variables or in a configuration file. If conflicting or
incompatible compiler options are specified in the same command line
compiler invocation, the subsequent option in the invocation takes precedence.

3. Compiler options specified as environment variables override compiler options
specified in a configuration file.

4. Compiler options specified in a configuration file, command line or source
program override compiler default settings.

Option conflicts that do not follow this priority sequence are described in
[“Resolving conflicting compiler options” on page 6.

Specifying compiler options on the command line

Most options specified on the command line override both the default settings of
the option and options set in the configuration file. Similarly, most options
specified on the command line are in turn overridden by pragma directives, which
provide you a means of setting compiler options right in the source file. Options
that do not follow this scheme are listed in [“Resolving conflicting compiler|
[options” on page 6|

Specifying compiler options in a configuration file
The default configuration file (/opt/ibm/xIC/13.1.1/etc/
xle.cfg.$§OSRelease.gcc$gecVersion. For example, /opt/ibm/x1C/13.1.1/etc/
xle.cfg.sles.12.gcc.4.8.2 or /opt/ibm/xIC/13.1.1/etc/xlc.cfg.ubuntu.14.04.gcc.4.8.2)
defines values and compiler options for the compiler. The compiler refers to this
file when compiling C or C++ programs. The configuration file is a plain text file.
You can edit this file, or create an additional customized configuration file to
support specific compilation requirements. For more information, see
fcustom compiler configuration files” on page 19,

Specifying compiler options in program source files
You can specify some compiler options within your program source by using
pragma directives. A pragma is an implementation-defined instruction to the
compiler. For those options that have equivalent pragma directives, you can have
several ways to specify the syntax of the pragmas:

* Using #pragma name syntax

Chapter 1. Compiling and linking applications 5

Some options also have corresponding pragma directives that use a
pragma-specific syntax, which may include additional or slightly different
suboptions. Throughout the section [“Individual option descriptions” on page 42,
each option description indicates whether this form of the pragma is supported,
and the syntax is provided.

* Using the standard C99 _Pragma operator

For options that support either forms of the pragma directives listed above, you
can also use the C99 _Pragma operator syntax in both C and C++.

Comilete details on pragma syntax are provided in [“Pragma directive syntax” on|

Other pragmas do not have equivalent command-line options; these are described
in detail throughout [Chapter 4, “Compiler pragmas reference,” on page 193]

Options specified with pragma directives in program source files override all other
option settings, except other pragma directives. The effect of specifying the same
pragma directive more than once varies. See the description for each pragma for
specific information.

Pragma settings can carry over into included files. To avoid potential unwanted
side effects from pragma settings, you should consider resetting pragma settings at
the point in your program source where the pragma-defined behavior is no longer
required. Some pragma options offer reset or pop suboptions to help you do this.
These suboptions are listed in the detailed descriptions of the pragmas to which

they apply.

Resolving conflicting compiler options

In general, if more than one variation of the same option is specified, the compiler
uses the setting of the last one specified. Compiler options specified on the
command line must appear in the order you want the compiler to process them.

Two exceptions to the rules of conflicting options are the -Idirectory and -Ldirectory
options, which have cumulative effects when they are specified more than once.
When options, for example, -qcheck, -gfloat, and -gstrict, with suboptions are
specified multiple times, each suboption overrides previous specifications of that
suboption, but different suboptions are cumulative.

In most cases, the compiler uses the following order in resolving conflicting or
incompatible options:

1. Pragma statements in source code override compiler options specified on the
command line.

2. Compiler options specified on the command line override compiler options
specified as environment variables or in a configuration file. If conflicting or
incompatible compiler options are specified on the command line, the option
appearing later on the command line takes precedence.

3. Compiler options specified as environment variables override compiler options
specified in a configuration file.

4. Compiler options specified in a configuration file override compiler default
settings.

Not all option conflicts are resolved using the preceding rules. The following table
summarizes exceptions and how the compiler handles conflicts between them.

6 XLC/C++: Compiler Reference for Little Endian Distributions

Option Conflicting options Resolution
l-qfloat=rsqrt] |-qnoignerrnol Last option specified
[-qfloat=hsfl{ [-gfloat=spnans| -qfloat=hsflt

o|E| E

EdH P

-#

Fd Ew] -B, -t, -W, -qpath

E -qpath

K S

-nostdinc++
-gnostdinc

'E

-isystem (-qc_stdinc, -qcpp_stdinc, -nostdinc, -nostdinc++
-qgec_c_stding, -qgec_cpp_stdinc) (-qnostdinc)

Preprocessing

Preprocessing manipulates the text of a source file, usually as a first phase of
translation that is initiated by a compiler invocation. Common tasks accomplished
by preprocessing are macro substitution, testing for conditional compilation
directives, and file inclusion.

You can invoke the preprocessor separately to process text without compiling. The
output is an intermediate file, which can be input for subsequent translation.
Preprocessing without compilation can be useful as a debugging aid because it
provides a way to see the result of include directives, conditional compilation
directives, and complex macro expansions.

The following table lists the options that direct the operation of the preprocessor.

Description

“-E” on page 5

Preprocesses the source files and writes the output to standard output.
By default, #1ine directives are generated.

©]
ac]
=2
=]
=
O
[[68)

“-P” on page 6

Preprocesses the source files and creates an intermediary file with a .i
file name suffix for each source file. By default, #1ine directives are
not generated.

“-C, -C!” on page|

Preserves comments in preprocessed output.

51

Defines a macro name from the command line, as if in a #define
directive.

-dD! Emits macro definitions to preprocessed output and prints the output.

“-dM Emits macro definitions to preprocessed output.

[(-gshowmacros)”|

on page 68

Produces the dependency files that are used by the make tool for each
source file.

-M' Generates a rule suitable for the make tool that describes the
dependencies of the input file.
-MD' Compiles the source files, generates the object file, and generates a

rule suitable for the make tool that describes the dependencies of the
input file in a .d file with the name of the input file.

Chapter 1. Compiling and linking applications 7

Option Description

-MF file' Specifies the file to write the dependencies to. The -MF option must be
specified with option -M or -MM.

-MG! Assumes that missing header files are generated files and adds them
to the dependency list without raising an error. The -MG option must
be used with option -M, -MD, -MM, or -MMD.

-MM! Generates a rule suitable for the make tool that describes the
dependencies of the input file, but does not mention header files that
are found in system header directories nor header files that are
included from such a header.

-MMD! Compiles the source files, generates the object file, and generates a
rule suitable for the make tool that describes the dependencies of the
input file in a .d file with the name of the input file. However, the
dependencies do not include header files that are found in system
header directories nor header files that are included from such a

header.
-MP! Instructs the C preprocessor to add a phony target for each
dependency other than the input file.
-MQ target' Changes the target of the rule emitted by dependency generation and
quotes any characters that are special to the make tool.
-MT target! Changes the target of the rule emitted by dependency generation.
Undefines a macro name defined by the compiler or by the -D option.
Note:

1. For details about the option, see the GNU Compiler Collection online documentation at
|http:/ /gcc.gnu.org/onlinedocs /|

Directory search sequence for include files
The XL C/C++ compiler supports the following types of include files:

* Header files supplied by the compiler (referred to throughout this document as
XL C/C++ headers)

* Header files mandated by the C and C++ standards (referred to throughout this
document as system headers)

* Header files supplied by the operating system (also referred to throughout this
document as system headers)

* User-defined header files

You can use any of the following methods to include any type of header file:

* Use the standard #include <file_name> preprocessor directive in the including
source file.

* Use the standard #include "file_name" preprocessor directive in the including
source file.

* Use the -include compiler option.

If you specify the header file using a full (absolute) path name, you can use these
methods interchangeably, regardless of the type of header file you want to include.
However, if you specify the header file using a relative path name, the compiler
uses a different directory search order for locating the file depending on the
method used to include the file.

8 XLcC/Ct++: Compiler Reference for Little Endian Distributions

http://gcc.gnu.org/onlinedocs/

Furthermore, the -qstdinc compiler option can affect this search order. The
following summarizes the search order used by the compiler to locate header files
depending on the mechanism used to include the files and on the compiler options
that are in effect:

1. Header files included with -include only: The compiler searches the current
(working) directory from which the compiler is invoked."

2. Header files included with -include or #include "file_name": The compiler
searches the directory in which the including file is located.'

3. All header files: The compiler searches each directory specified by the -I
compiler option, in the order that it displays on the command line.

4. All header files: The compiler searches the standard directory for the system
headers. The default directory for these headers is specified in the compiler
configuration file. This location is set during installation, but the search path
can be changed with the -isystem (-qgcc_c_stdinc or -qgcc_cpp_stdinc)
option.?

Note:

* If the -noestdinc or -nestdinc++ (-qnostdinc) compiler option is in effect, steps 4
is omitted.

Related information

* |”-I” on page 56|

+ [“-isystem (-qc_stdinc) (C only)” on page 93|

+ |“-isystem (-qcpp_stdinc) (C++ only)” on page 95|

* [“-isystem (-qgcc_c_stdinc) (C only)” on page 96|

+ [“-isystem (-ggcc_cpp_stdinc) (C++ only)” on page 97

* [“-include (-ginclude)” on page 92|

* |“-gstdinc, -qnostdinc (-nostdinc, -nostdinc++)” on page 169|

Linking

The linker links specified object files to create one executable file. Invoking the
compiler with one of the invocation commands automatically calls the linker
unless you specify one of the following compiler options:

. -c
« -E

. -M

. -p

. -S

+ -fsyntax-only (-gsyntaxonly)
o -### (-#)

* --help (-ghelp)
* --version (-qversion)

Input files
Object files, unstripped executable files, and library files serve as input to
the linker. Object files must have a .o suffix, for example, filename.o.
Static library file names have a .a suffix, for example, filename.a.
Dynamic library file names typically have a .so suffix, for example,
filename.so.

Output files
The linker generates an executable file and places it in your current

Chapter 1. Compiling and linking applications 9

directory. The default name for an executable file is a.out. To name the
executable file explicitly, use the -o file_name option with the compiler
invocation command, where file_name is the name you want to give to the
executable file. For example, to compile myfile.c and generate an
executable file called myfile, enter:

x1c myfile.c -o myfile

If you use the -shared (-gmkshrobj) option to create a shared library, the
default name of the shared object created is a.out. You can use the -o
option to rename the file and give it a .so suffix.

You can invoke the linker explicitly with the 1d command. However, the compiler
invocation commands set several linker options, and link some standard files into
the executable output by default. In most cases, it is better to use one of the
compiler invocation commands to link your object files. For a complete list of
options available for linking, see [“Linking” on page 40,

Note: If you want to use a nondefault linker, you can use either of the following
options:

* Use|-t|and [-B| or use |-gpath|to specify the nondefault linker, for example,
-t1 -Blinker_path

or
-qpath=1:linker_path
* Customize the configuration file of the compiler to use the nondefault linker. For

more information about how to customize the configuration file, see |Ejsina
fcustom compiler configuration files| and [Creating custom configuration files|

Related information
* |“-shared (-qgmkshrobj)” on page 17|

Order of linking
The compiler links libraries in the following order:
1. System startup libraries

User .o files and libraries

XL C/C++ libraries

C++ standard libraries

Al S

C standard libraries

Related information
* |“Linking” on page 40|
* [“Redistributable libraries”]

Redistributable libraries

If you build your application using XL C/C++, it might use one or more of the
following redistributable libraries. If you ship the application, ensure that the users
of the application have the packages containing the libraries. To make sure the
required libraries are available to users, you must do one of the following:

* You can ship the packages that contain the redistributable libraries with the
application. The packages are stored under the images/rpms directory on the
installation DVD.

10 XL C/C++: Compiler Reference for Little Endian Distributions

* The user can download the packages that contain the redistributable libraries
from the XL C/C++ support website at:

http:/ /www.ibm.com /support/entry/portal /overview /software/rational / |

xl_c~c++_for_linux|

For information about the licensing requirements related to the distribution of
these packages, see the LicenseAgreement.pdf file on the DVD.

Table 5. Redistributable libraries

Package

name Libraries (and default installation path) Description

libxlc-devel |/opt/ibm/x1C/13.1.1/1ib/1ibx1.a XL C/C++ compiler
/opt/ibm/x1C/13.1.1/1ib/1ibx1opt.a libraries

vacpp.rte

/opt/ibmemp/vac/13.1.1/1ib/1ibibmc++.s0.1

XL C++ runtime
libraries

Compiler messages and listings

Table 6. Compiler message severity levels

The following sections discuss the various methods of reporting provided by the
compiler after compilation.

+ [“Compiler messages”]|

+ [“Compiler listings” on page 13|

+ [“Paging space errors during compilation” on page 14|

Compiler messages

When the compiler encounters a programming error while compiling a C or C++
source program, it issues a diagnostic message to the standard error device. The
compiler provides a number of ways to control which code constructs cause it to
emit errors and warning messages, and how they are displayed to the console.

Message severity levels and compiler response

The XL C/C++ compiler uses a multilevel classification scheme for diagnostic
messages. Each level of severity is associated with a compiler response. The table
below provides a key to the abbreviations for the severity levels and the associated
default compiler response.

You can use the -Werror (-ghalt=w) option to stop the compilation for warnings

and all types of errors.

You can use the -Werror=unused-command-1ine-argument option to switch between
warnings and errors for invalid options.

Letter Severity Synonym Compiler response

I Informational note Compilation continues and object code is generated. The message
reports conditions found during compilation.

W Warning warning Compilation continues and object code is generated. The message
reports valid but possibly unintended conditions.

Error error Compilation continues and object code is generated. Error
conditions exist that the compiler can correct, but the program

E might not produce the expected results.

Chapter 1. Compiling and linking applications 11

http://www.ibm.com/support/entry/portal/overview/software/rational/xl_c~c++_for_linux
http://www.ibm.com/support/entry/portal/overview/software/rational/xl_c~c++_for_linux

Table 6. Compiler message severity levels (continued)

Letter

Severity

Synonym

Compiler response

S

Severe error

error

Compilation continues, but object code is not generated. Error
conditions exist that the compiler cannot correct:

* If the message indicates a resource limit (for example, file
system full or paging space full), provide additional resources
and recompile.

¢ If the message indicates that different compiler options are
needed, recompile using them.

* Check for and correct any other errors reported prior to the
severe error.

¢ If the message indicates an internal compile-time error, the
message should be reported to your IBM service representative.

Unrecoverable
error

fatal error

The compiler halts. An internal compile-time error has occurred.
The message should be reported to your IBM service
representative.

Related information

* [“-Werror (-ghalt)” on page 66|

+ [“Listings, messages, and compiler information” on page 38|

Compiler return codes

At the end of compilation, the compiler sets the return code to zero when no
messages are issued.

Otherwise, the compiler sets the return code to one of the following values:

Return code

Error type

1

Any error with a severity level higher than the setting of the -qhalt
compiler option has been detected.

40

An option error or an unrecoverable error has been detected.

41

A configuration file error has been detected.

249

A no-files-specified error has been detected.

250

An out-of-memory error has been detected. The compiler cannot
allocate any more memory for its use.

251

A signal-received error has been detected. That is, an unrecoverable
error or interrupt signal has occurred.

252

A file-not-found error has been detected.

253

An input/output error has been detected: files cannot be read or
written to.

254

A fork error has been detected. A new process cannot be created.

255

An error has been detected while the process was running.

Note: Return codes can also be displayed for runtime errors.

gxic and gxlc++ return codes

Like other invocation commands, gxlc and gxlc++ return output, such as listings,
diagnostic messages related to the compilation, warnings related to unsuccessful
translation of GNU options, and return codes. If gxlc or gxlc++ cannot successfully
call the compiler, it sets the return code to one of the following values:

12 XL C/C++: Compiler Reference for Little Endian Distributions

40 A gxlc or gxlc++ option error or unrecoverable error has been detected.
255 An error has been detected while the process was running.

Compiler listings
A listing is a compiler output file (with a .Ist suffix) that contains information

about a particular compilation. As a debugging aid, a compiler listing is useful for
determining what has gone wrong in a compilation.

To produce a listing, you can compile with any of the following options, which
provide different types of information:

Listing information is organized in sections. A listing contains a header section and
a combination of other sections, depending on other options in effect. The contents
of these sections are described as follows.

Header section
Lists the compiler name, version, release, the source file name, and the
date and time of the compilation.

File table section
Lists the file name and number for each main source file and include file.
Each file is associated with a file number, starting with the main source
file, which is assigned file number 0.

PDF report section
The following information is included in this section when you use the
-greport option with the -qpdf2 option:

Loop iteration count
The most frequent loop iteration count and the average iteration
count, for a given set of input data, are calculated for most loops in
a program. This information is only available when the program is
compiled at optimization level -05.

Block and call count
This section covers the Call Structure of the program and the
respective execution count for each called function. It also includes
Block information for each function. For non-user defined functions,
only execution count is given. The Total Block and Call Coverage,
and a list of the user functions ordered by decreasing execution
count are printed in the end of this report section. In addition, the
Block count information is printed at the beginning of each block
of the pseudo-code in the listing files.

Cache miss
This section is printed in a single table. It reports the number of
Cache Misses for certain functions, with additional information
about the functions such as: Cache Level , Cache Miss Ratio, Line
Number, File Name, and Memory Reference.

Note: You must use the option -qpdfl=1evel=2 to get this report.
You can also select the level of cache to profile using the
environment variable PDF_PM_EVENT during run time.

Relevance of profiling data
This section shows the relevance of the profiling data to the source

Chapter 1. Compiling and linking applications 13

code during the -qpdfl phase. The relevance is indicated by a
number in the range of 0 - 100. The larger the number is, the more
relevant the profiling data is to the source code, and the more
performance gain can be achieved by using the profiling data.

Missing profiling data
This section might include a warning message about missing
profiling data. The warning message is issued for each function for
which the compiler does not find profiling data.

Outdated profiling data
This section might include a warning message about outdated
profiling data. The compiler issues this warning message for each
function that is modified after the -qpdfl phase. The warning
message is also issued when the optimization level changes from
the -qpdfl phase to the -qpdf2 phase.

Transformation report section
If the -qreport option is in effect, this section displays pseudo code that
corresponds to the original source code, so that you can see parallelization
and loop transformations that the -ghot option has generated.

This section also reports the number of streams created for a given loop
and the location of data prefetch instructions inserted by the compiler. To
generate information about data prefetch insertion locations, use the
optimization level of -ghot, -03 -ghot, -04 or -05 together with -qreport.

Data reorganization section
Displays data reorganization messages for program variable data during
the IPA link pass when -qreport is used with -qipa=level=2 or -05.
Reorganization information includes:

* array splitting
* array transposing
* memory allocation merging
* array interleaving
* array coalescing
Object section
If you specify the -qlist option, the Object section lists the object code
generated by the compiler. This section is useful for diagnosing

execution-time problems, if you suspect the program is not performing as
expected due to code generation error.

Constant area section
If you specify the -qlist option, the Constant area section lists the
constants used in the program. The compiler loads from the constant area
section by loading the starting address of this section and adding the fixed
offsets to the respective constants.

Related information
* |“Listings, messages, and compiler information” on page 38|

Paging space errors during compilation

If the operating system runs low on paging space during a compilation, the
compiler issues the following message:

1501-229 Compilation ended due to lack of space.

14 XL C/C++: Compiler Reference for Little Endian Distributions

To minimize paging-space problems, take any of the following actions and
recompile your program:

* Reduce the size of your program by splitting it into two or more source files
* Compile your program without optimization

* Reduce the number of processes competing for system paging space

* Increase the system paging space

For more information about paging space and how to allocate it, see your
operating system documentation.

Chapter 1. Compiling and linking applications

15

16 XL C/C++: Compiler Reference for Little Endian Distributions

Chapter 2. Configuring compiler defaults

When you compile an application with XL C/C++, the compiler uses default
settings that are determined in a number of ways:

* Internally defined settings. These settings are predefined by the compiler and
you cannot change them.

* Settings defined by system environment variables. Certain environment variables
are required by the compiler; others are optional. You might have already set
some of the basic environment variables during the installation process (for more
information, see the [XL C/C++ Installation Guide). [“Setting environment|
provides a complete list of the required and optional environment
variables you can set or reset after installing the compiler.

* Settings defined in the compiler configuration file, xlc.cfg. The compiler requires
many settings that are determined by its configuration file. Normally, the
configuration file is automatically generated during the installation procedure.
(For more information, see the [XL. C/C++ Installation Guide). However, you can
customize this file after installation, to specify additional compiler options,
default option settings, library search paths, and other settings. Information on
customizing the configuration file is provided in [“Using custom compiler]
fconfiguration files” on page 19.|

Setting environment variables

To set environment variables in Bourne, Korn, and BASH shells, use the following
commands:

variable=value
export variable

where variable is the name of the environment variable, and value is the value you
assign to the variable.

To set environment variables in the C shell, use the following command:
setenv variable value

where variable is the name of the environment variable, and value is the value you
assign to the variable.

To set the variables so that all users have access to them, in Bourne, Korn, and
BASH shells, add the commands to the file /etc/profile. To set them for a specific
user only, add the commands to the file .profile in the user's home directory. In C
shell, add the commands to the file /efc/csh.cshrc. To set them for a specific user
only, add the commands to the file .cshrc in the user's home directory. The
environment variables are set each time the user logs in.

The following sections discuss the environment variables you can set for XL
C/C++ and applications you have compiled with it:

* [“Compile-time and link-time environment variables” on page 18|

+ [“Runtime environment variables” on page 18|

© Copyright IBM Corp. 1996, 2014 17

Compile-time and link-time environment variables

The following environment variables are used by the compiler when you are
compiling and linking your code. Many are built into the Linux operating system.
With the exception of LANG and NLSPATH, which must be set if you are using a
locale other than the default en_US, all of these variables are optional.

LANG
Specifies the locale for your operating system. The default locale used by
the compiler for messages and help files is United States English, en_US,
but the compiler supports other locales. For a list of these, see
[language support|in the XL C/C++ Installation Guide. For more information
on setting the LANG environment variable to use an alternate locale, see
your operating system documentation.

LD_RUN_PATH
Specifies search paths for dynamically loaded libraries, equivalent to using
the @ link-time option. The shared-library locations named by the
environment variable are embedded into the executable, so the dynamic
linker can locate the libraries at application run time. For more information
about this environment variable, see your operating system documentation.
See also [“-R” on page 62

NLSPATH
Specifies the directory search path for finding the compiler message and
help files. You only need to set this environment variable if the national
language to be used for the compiler message and help files is not English.
For information on setting the NLSPATH, see [Enabling the XL C/C++ error|

in the XL C/C++ Installation Guide.

PATH Specifies the directory search path for the executable files of the compiler.
Executables are in /opt/ibm/xIC/13.1.1/bin/ if installed to the default
location. For information, see |Setting the PATH environment variable tof
linclude the path to the XL C/C++ invocations|in the XL C/C++ Installation
Guide

TMPDIR
Optionally specifies the directory in which temporary files are created
during compilation. The default location, /tmp/, may be inadequate at high
levels of optimization, where paging and temporary files can require
significant amounts of disk space, so you can use this environment variable
to specify an alternate directory.

XLC_USR_CONFIG
Specifies the location of a custom configuration file to be used by the
compiler. The file name must be given with its absolute path. The compiler
will first process the definitions in this file before processing those in the
default system configuration file, or those in a customized file specified by
the -F option; for more information, see [“Using custom compiler]|
fconfiguration files” on page 19/

Runtime environment variables

The following environment variables are used by the system loader or by your
application when it is executed. All of these variables are optional.

LD_LIBRARY_PATH
Specifies an alternate directory search path for dynamically linked libraries
at application run time. If shared libraries required by your application
have been moved to an alternate directory that was not specified at link

18 XL C/C++: Compiler Reference for Little Endian Distributions

time, and you do not want to relink the executable, you can set this
environment variable to allow the dynamic linker to locate them at run
time. For more information about this environment variable, see your
operating system documentation.

PDFDIR
Optionally specifies the directory in which profiling information is saved
when you run an application that you have compiled with the -qpdf1
option. The default value is unset, and the compiler places the profile data
file in the current working directory. If the PDFDIR environment variable is
set but the specified directory does not exist, the compiler issues a warning
message. When you recompile or relink your program with the -qpdf2
option, the compiler uses the data saved in this directory to optimize the
application. It is recommended that you set this variable to an absolute

path if you use profile-directed feedback (PDEF). See [“-qpdf1, -qpdf2” on|

for more information.

PDF_PM_EVENT
When you run an application compiled with -qpdfl=1evel=2 and want to
gather different levels of cache-miss profiling information, set the
PDF_PM_EVENT environment variable to LIMISS, L2MISS, or L3MISS (if
applicable) accordingly.

PDF_BIND_PROCESSOR
If you want to bind your process to a particular processor, you can specify
the PDF_BIND_PROCESSOR environment variable to bind the process tree
from the executable to a different processor. Processor 0 is set by default.

PDF_WL_ID

This environment variable is used to distinguish the sets of PDF counters
that are generated by multiple training runs of the user program. Each run
receives distinct input.

By default, PDF counters for training runs after the first training run are
added to the first and the only set of PDF counters. This behavior can be
changed by setting the PDF_WL_ID environment variable before each PDF
training run. You can set PDF_WL_ID to an integer value in the range 1 -
65535. The PDF runtime library then uses this number to tag the set of
PDF counters that are generated by this training run. After all the training
runs complete, the PDF profile file contains multiple sets of PDF counters,
each set with an ID number.

Using custom compiler configuration files

The XL C/C++ compiler generates a default configuration file
/opt/ibm/x1C/13.1.1/etc/xlc.cfg.$OSRelease.gcc$gecVersion. For example,
/opt/ibm/xIC/13.1.1/etc/xlc.cfg.sles.12.gcc.4.8.2 or /opt/ibm/xIC/13.1.1/etc/
xle.cfg.ubuntu.14.04.gcc.4.8.2 at installation time. (See the XL C/C++ Installation
Guide for more information on the various tools you can use to generate the
configuration file during installation.) The configuration file specifies information
that the compiler uses when you invoke it.

If you are running on a single-user system, or if you already have a compilation
environment with compilation scripts or makefiles, you might want to leave the

default configuration file as it is.

If you want users to be able to choose among several sets of compiler options, you
might want to use custom configuration files for specific needs. For example, you

Chapter 2. Configuring compiler defaults 19

might want to enable -qlist by default for compilations using the xlc compiler
invocation command. This is to avoid forcing your users to specify this option on
the command line for every compilation, because -gqnolist is automatically in
effect every time the compiler is called with the xlc command.

You have several options for customizing configuration files:

* You can directly edit the default configuration file. In this case, the customized
options will apply for all users for all compilations. The disadvantage of this
option is that you will need to reapply your customizations to the new default
configuration file that is provided every time you install a compiler update.

* You can use the default configuration file as the basis of customized copies that
you specify at compile time with the E option. In this case, the custom file
overrides the default file on a per-compilation basis.

Note: This option requires you to reapply your customization after you apply
service to the compiler.

* You can create custom, or user-defined, configuration files that are specified at
compile time with the XLC_USR_CONFIG environment variable. In this case,
the custom user-defined files complement, rather than override, the default
configuration file, and they can be specified on a per-compilation or global basis.
The advantage of this option is that you do not need to modify your existing,
custom configuration files when a new system configuration file is installed
during an update installation. Procedures for creating custom, user-defined
configuration files are provided below.

Related information:

+ |“-F” on page 54|

* [“Compile-time and link-time environment variables” on page 18|

Creating custom configuration files

If you use the XLC_USR_CONFIG environment variable to instruct the compiler to
use a custom user-defined configuration file, the compiler examines and processes
the settings in that user-defined configuration file before looking at the settings in
the default system configuration file.

To create a custom user-defined configuration file, you add stanzas which specify
multiple levels of the use attribute. The user-defined configuration file can
reference definitions specified elsewhere in the same file, as well as those specified
in the system configuration file. For a given compilation, when the compiler looks
for a given stanza, it searches from the beginning of the user-defined configuration
file and follows any other stanza named in the use attribute, including those
specified in the system configuration file.

If the stanza named in the use attribute has a name different from the stanza
currently being processed, the search for the use stanza starts from the beginning
of the user-defined configuration file. This is the case for stanzas A, C, and D
which you see in the following example. However, if the stanza in the use attribute
has the same name as the stanza currently being processed, as is the case of the
two B stanzas in the example, the search for the use stanza starts from the location
of the current stanza.

The following example shows how you can use multiple levels for the use

attribute. This example uses the options attribute to help show how the use
attribute works, but any other attributes, such as libraries can also be used.

20 XL C/C++: Compiler Reference for Little Endian Distributions

A: use =DEFLT
options=<set of options A>

B: use =B

options=<set of options BI>
B: use =D

options=<set of options B2>
C: use =A

options=<set of options (>
D: use =A

options=<set of options D>
DEFLT:

options=<set of options 7>

Figure 1. Sample configuration file

In this example:
* stanza A uses option sets A and Z
* stanza B uses option sets B1, B2, D, A, and Z
* stanza C uses option sets C, A, and Z
» stanza D uses option sets D, A, and Z

Attributes are processed in the same order as the stanzas. The order in which the
options are specified is important for option resolution. Ordinarily, if an option is
specified more than once, the last specified instance of that option wins.

By default, values defined in a stanza in a configuration file are added to the list of
values specified in previously processed stanzas. For example, assume that the
XLC_USR_CONFIG environment variable is set to point to the user-defined
configuration file at ~/userconfigl. With the user-defined and default configuration
files shown in the following example, the compiler references the xlc stanza in the
user-defined configuration file and uses the option sets specified in the
configuration files in the following order: A1, A, D, and C.

x1c: use=xlc x1c: use=DEFLT
options= <AI> options=<A>

DEFLT: use=DEFLT DEFLT:
options=<D> options=<(>

Figure 2. Custom user-defined configuration Figure 3. Default configuration file xlc.cfg
file ~/userconfig1

Overriding the default order of attribute values
You can override the default order of attribute values by changing the assignment
operator(=) for any attribute in the configuration file.

Table 7. Assignment operators and attribute ordering

Assignment

Operator Description

-= Prepend the following values before any values determined by the default
search order.

Chapter 2. Configuring compiler defaults 21

Table 7. Assignment operators and attribute ordering (continued)

Assignment s
Operator Description
= Replace any values determined by the default search order with the
following values.
+= Append the following values after any values determined by the default
search order.

For example, assume that the XLC_USR_CONFIG environment variable is set to
point to the custom user-defined configuration file at ~/userconfig?2.

Custom user-defined configuration file
~luserconfig2 Default configuration file xlc.cfg

x1c_prepend: use=xlc x1c: use=DEFLT
options-=<BI> options=<>
xTc_replace: use=xlc
options:=<B2> DEFLT:
x1c_append: use=xlc

options=<C>
options+=<B3> P ¢

DEFLT: use=DEFLT
options=<D>

The stanzas in the preceding configuration files use the following option sets, in
the following orders:

1. stanza xlc uses B, D, and C

2. stanza xlc_prepend uses B1, B, D, and C
3. stanza xlc_replace uses B2

4. stanza xlc_append uses B, D, C, and B3

You can also use assignment operators to specify an attribute more than once. For
example:

xlc:
use=x1c
options-=-Isome_include_path
options+=some options

Figure 4. Using additional assignment operations

Examples of stanzas in custom configuration files

DEFLT: use=DEFLT This example specifies that the -g option is to
options = -g be used in all compilations.
xlc: use=xlc options+=-qlist This example specifies that -qlist is to be used

for any compilation called by the xlc command.
This -qlist specification overrides the default
setting of -qlist specified in the system
configuration file.

DEFLT: use=DEFLT This example specifies that all compilations
libraries=-L/home/user/1ib,-1mylib should link with /home/user/lib/libmylib.a.

22 XL C/C++: Compiler Reference for Little Endian Distributions

Using IBM XL C/C++ for Linux, V13.1.1 with the Advance
Toolchain

IBM XL C/C++ for Linux, V13.1.1 supports IBM Advance Toolchain 8.0, which is a
set of open source development tools and runtime libraries. With IBM Advance
Toolchain 8.0, you can take advantage of the latest POWER® hardware features on
Linux, especially the tuned libraries. For more information about the Advance
Toolchain 8.0, see [[BM Advance Toolchain for PowerLinux Documentation}

To use IBM XL C/C++ for Linux, V13.1.1 with the Advance Toolchain, take the
following steps:

1. Install the at8.0 packages into the default installation location. For instructions,
see [[BM Advance Toolchain for PowerLinux Documentation|

2. Run the x1c_configure utility to create the x1c.at.cfg configuration file. In the
x1c.at.cfg configuration file, all other entities except the XL C/C++ compiler
are directed to those of the Advance Toolchain. The entities include the linker,
headers, and runtime libraries.

Note: To run the x1¢c_configure utility, you must either become the root user or
use the sudo command.

* If you installed the compiler in the default location, issue the following
command:

xTc_configure -at

* If you installed the compiler in a nondefault installation (NDI) location, issue
the following command:
x1c_configure -at -ibmemp $ndi_path

where $ndi_path is the directory in which you installed the compiler.
3. Invoke the XL compiler with the Advance Toolchain support.

* If you installed the compiler in the default location, issue the following
commands to invoke the C/C++ compiler:
/opt/ibm/x1C/13.1.1/bin/x1c_at
/opt/ibm/x1C/13.1.1/bin/x1C_at

* If you installed the compiler in an NDI location, issue the following
commands:

$ndi_path/x1C/13.1.1/bin/x1c_at
$ndi_path/x1C/13.1.1/bin/x1C_at

Note: If you use the XL compiler with the Advance Toolchain support to build
your application, your application can run only under the Advance Toolchain
environment because the application depends on the runtime library of the
Advance Toolchain. If you copy the application to run on other machines, ensure
that the Advance Toolchain, or at least the runtime library of the Advance
Toolchain is available on those machines.

Chapter 2. Configuring compiler defaults 23

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W51a7ffcf4dfd_4b40_9d82_446ebc23c550/page/IBM%20Advance%20Toolchain%20for%20PowerLinux%20Documentation?section=introduction
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W51a7ffcf4dfd_4b40_9d82_446ebc23c550/page/IBM%20Advance%20Toolchain%20for%20PowerLinux%20Documentation?section=introduction

24 XL C/C++: Compiler Reference for Little Endian Distributions

Chapter 3. Compiler options reference

The following sections contain a summary of the compiler options available in XL
C/C++ by functional category, followed by detailed descriptions of the individual
options.

Related information
* [“Specifying compiler options” on page 4|

Supported GCC options

The following GCC options are supported in IBM XL C/C++ for Linux, V13.1.1.
For details about these options, see the GNU Compiler Collection online
documentation at |http:/ /gcc.gnu.org/onlinedocs /}

@file

-HHH

--help

--sysroot

--version

-ansi

-dD

-dM

-fansi-escape-codes

-fasm, -fno-asm

-fcolor-diagnostics

-fcommon, -fno-common
-fconstexpr-depth

-fexceptions

-ffast-math
-fdiagnostic-parsable-fixits
-fdiagnostics-fixit-info
-fdiagnostics-format=[clang | msvc | vi]
-fdiagnostic-show-category=[none | id | name]
-fdiagnostic-show-template-tree
-fdiagnostics-print-source-range-info
-fdiagnostics-show-name
-fdiagnostics-show-option
-fdollars-in-identifiers, -fno-dollars-in-identifiers
-fdump-class-hierarchy

-ffreestanding

-fgnu89-inline

-fhosted

-finline-functions

-fmessage-length

© Copyright IBM Corp. 1996, 2014

25

http://gcc.gnu.org/onlinedocs/

* -fno-access-control

* -fno-assume-sane-operator-new
* -fno-builtin

* -fno-diagnostics-show-caret

* -fno-diagnostics-show-option
* -fno-elide-type

* -fno-gnu-keywords

* -fno-operator-names

* -fno-rtti

* -fno-show-column

* -fpack-struct

* -fpermissive

e -fPIC, -fno-PIC

e -fPIE, -fno-PIE

* -fshort-enums

* -fshort-wchar

* -fshow-column

* -fshow-source-location

* -fsigned-char, -fno-signed-char
+ -fstrict-aliasing
 -fsyntax-only

* -ftabstop=width

* -ftemplate-backtrace-limit

* -ftemplate-depth

* -ftime-report

e -ftls-model, -fno-tls-model

* -ftrap-function=name
 -ftrapping-math, -fnotrapping-math
* -funsigned-char, -fno-unsigned-char
* -funroll-all-loops

* -funroll-loops

 -fvisibility

* -idirafter

* -imacros

* -include
* -iprefix
* -iquote
* -isysroot
* -isystem
* -iwithprefix
s -M

* -MD

* -MF

* -MG

- -MM

26 XL C/C++: Compiler Reference for Little Endian Distributions

-maltivec, -mno-altivec
-mcpu

-mtune

-nodefaultlibs
-nostartfiles

-nostdinc

-nostdinc++

-Ofast

-pedantic
-pedantic-errors

-pie

-rdynamic

-shared

-shared-libgcc

-static

-static-libgcc

-std

-trigraphs

-wW

-Wall
-Wambiguous-member-template
-Wbad-function-cast
-Wbind-to-temporary-copy
-Wc++11-compat
-Wecast-align
-Wchar-subscripts
-Wcomment
-Wconversion
-Wdelete-non-virtual-dtor
-Wempty-body
-Wenum-compare

-Werror

-Werror=foo [specically, -Werror=unused-command-line-argument to switch

between warning/error for invalid options]

-Weverything
-Wextra-tokens
-Wfatal-errors
-Wfloat-equal
-Wfoo
-Wformat-nonliteral
-Wformat-security

Chapter 3. Compiler options reference

27

* -Wformat-y2k

* -Wignored-qualifiers

* -Wimplicit

* -Wimplicit-function-declaration
* -Wimplicit-int

* -Wmain

* -Wmissing-braces

* -Wmissing-field-initializers
* -Wmissing-prototypes

* -Wnarrowing

* -Wno-attributes

* -Wno-builtin-macro-redefined
* -Wno-deprecated

* -Wno-deprecated-declarations
* -Wno-division-by-zero

* -Wno-endif-labels

* -Wno-format

* -Wno-format-extra-args

* -Wno-format-zero-length
* -Wno-int-conversion

* -Wno-int-to-pointer-cast

* -Wno-invalid-offsetof

* -Wno-multichar

* -Wno-unused-result

* -Wno-return-local-addr

* -Wno-virtual-move-assign
* -Wnon-virtual-dtor

e -Wnonnull

* -Woverlength-strings

* -Woverloaded-virtual

* -Wpadded

* -Wparantheses

* -Wpedantic

* -Wpointer-arith

* -Wpointer-sign

* -Wreorder

* -Wreturn-type

* -Wsequence-point

* -Wshadow

* -Wsign-compare

* -Wsign-conversion

* -Wsizeof-pointer-memaccess
* -Wswitch

* -Wsystem-headers

* -Wtautological-compare

28 XL C/C++: Compiler Reference for Little Endian Distributions

* -Witrigraphs

* -Wtype-limits

* -Wundef

* -Wuninitialized

* -Wunknown-pragmas
* -Wunused

* -Wunused-label

* -Wunused-parameter
* -Wunused-value

* -Wunused-variable
* -Wvarargs

* -Wvariadic-macros
* -Wvla

* -Wwrite-strings

* X

« X

Summary of compiler options by functional category

The XL C/C++ options available on the Linux platform are grouped into the
following categories. If the option supports an equivalent pragma directive, this is
indicated. To get detailed information on any option listed, see the full description
for that option.

* [“Output control”|

+ [“Input control” on page 31|

+ [“Language element control” on page 31|

+ [“Template control (C++ only)” on page 32|

+ [“Floating-point and integer control” on page 32|

* [“Error checking and debugging” on page 34|

* |“Listings, messages, and compiler information” on page 38|

* |[“Optimization and tuning” on page 38|

* |“Object code control” on page 33|

* [“Linking” on page 40|

+ [“Portability and migration” on page 41|

« |[“Compiler customization” on page 42|

Output control

The options in this category control the type of file output the compiler produces,
as well as the locations of the output. These are the basic options that determine
the compiler components that will be invoked; the preprocessing, compilation, and
linking steps that will (or will not) be taken; and the kind of output to be
generated.

Table 8. Compiler output options

Option name Description

“-c” on page 6

Instructs the compiler to compile or assemble the
source files only but do not link. With this option, the
output is a .o file for each source file.

Chapter 3. Compiler options reference 29

Table 8. Compiler output options (continued)

Option name

Description

[“-C, -C!” on page 51|

When used in conjunction with the -E or -P options

1% y
preserves or removes comments in preprocessed
output.

“-E” on page 53

Preprocesses the source files named in the compiler
invocation, without compiling.

[“-0” on page 105|

Specifies a name for the output object, assembler,
executable, or preprocessed file.

Preprocesses the source files named in the compiler
invocation, without compiling, and creates an output
preprocessed file for each input file.

“-S” on page 63

Generates an assembler language file for each source
file.

[“-X (-W)” on page 65

-Xpreprocessor option or -Wp,preprocessor option passes
the listed option directly to the preprocessor.

[-gmakedep, -MD|
[(-qmakedep=gcc)” on page 141|

Produces the dependency files that are used by the
make tool for each source file.

[“-dM (-gshowmacros)” on page|

Emits macro definitions to preprocessed output.

[“-gtimestamps” on page 175|

Controls whether or not implicit time stamps are
inserted into an object file.

“_shared (-gmkshrobj)” on page
178

Creates a shared object from generated object files.

The following options are supported by XL C/C++ for GCC compatibility. For
details about these options, see the GNU Compiler Collection online

documentation at fhttp:/ /gcc.egnu.org/onlinedocs /|

o -HiH

* -dCHARS
- -M

« -MD

* -MF file

* -MG

« -MM

*+ -MMD

s -MP

* -MQ target
e -MT target

* -Xpreprocessor option

30 XLC/C++: Compiler Reference for Little Endian Distributions

http://gcc.gnu.org/onlinedocs/

Input control

The options in this category specify the type and location of your source files.

Table 9. Compiler input options

Option name Description

Adds a directory to the search path for include files.

[“-include (-ginclude)” on page]
Specifies additional header files to be included in a

compilation unit, as though the files were named in an
#include statement in the source file.

[“-x (-gsourcetype)” on page 189

Instructs the compiler to treat all recognized source files
as a specified source type, regardless of the actual file
name suffix.

“_gstdinc, -qnostdinc (-nostdinc)
-nostdinc++)” on page 169 Specifies whether the standard include directories are

included in the search paths for system and user header
files.

Language element control

The options in this category allow you to specify the characteristics of the source
code. You can also use these options to enforce or relax language restrictions, and
enable or disable language extensions.

Table 10. Language element control options

Option name Description

Defines a macro as in a #define preprocessor directive.
Undefines a macro defined by the compiler or by the -D

compiler option.

[“-fasm (-gasm)” on page 70| Controls the interpretation and subsequent generation of
code for assembler language extensions.

“_maltivec (-galtivec)” on page|
10 Enables the compiler support for vector data types and

operators.

|“-fdollars-in-identifiers|
[(-qdollar)” on page 72| Allows the dollar-sign ($) symbol to be used in the
names of identifiers.

[“-std (-glanglv]l)” on page 182

Determines whether source code and compiler options
should be checked for conformance to a specific
language standard, or subset or superset of a standard.

[“-gstaticinline (C++ only)” on|
| 2oe 1 68| Controls whether inline functions are treated as having

static or extern linkage.

[“-X (-W)” on page 65|

-Xassembler option or -Wa,option passes the listed option
directly to the assembler.

The following options are supported by XL C/C++ for GCC compatibility. For
details about these options, see the GNU Compiler Collection online
documentation at |http:/ /gcc.gnu.org/onlinedocs /}

* -ansi

Chapter 3. Compiler options reference 31

http://gcc.gnu.org/onlinedocs/

» -fconstexpr-depth

* -ffreestanding

* -fgnu89-inline

* -fhosted

* -fno-access-control
* -fno-builtin

* -fno-gnu-keywords
* -fno-operator-names
* -fno-rtti

* -fpermissive

* -fsigned-char

* -ftemplate-backtrace-limit
* -ftemplate-depth

* -funsigned-char

* -trigraphs

» -Xassembler option

Template control (C++ only)

You can use these options to control how the C++ compiler handles templates.

Table 11. C++ template options

Option name Description

[“-ftemplate-depth (-qtemplatedepth) (C++
[only)” on page 80| Specifies the maximum number of
recursively instantiated template
specializations that will be processed by
the compiler.

[“-gtmplinst (C++ only)” on page 175|

Manages the implicit instantiation of
templates.

Floating-point and integer control

Specifying the details of how your applications perform calculations can allow you
to take better advantage of your system's floating-point performance and precision,
including how to direct rounding. However, keep in mind that strictly adhering to
IEEE floating-point specifications can impact the performance of your application.
Using the options in the following table, you can control trade-offs between
floating-point performance and adherence to IEEE standards.

Table 12. Floating-point and integer control options

Option name Description

[“~fsigned-char, -funsigned-char]
[(-gchars)” on page 77| Determines whether all variables of type char are
treated as either signed or unsigned.

[“-gfloat” on page 118]

Selects different strategies for speeding up or improving
the accuracy of floating-point calculations.

[“-gstrict” on page 170| Ensures that optimizations done by default at the -03
and higher optimization levels, and, optionally at -02,
do not alter the semantics of a program.

32 XL C/C++: Compiler Reference for Little Endian Distributions

Table 12. Floating-point and integer control options (continued)

Option name Description

[“-y” on page 190|

Specifies the rounding mode for the compiler to use
when evaluating constant floating-point expressions at
compile time.

Object code control

These options affect the characteristics of the object code, preprocessed code, or
other output generated by the compiler.

Table 13. Object code control options

Option name Description

“_fcommon (-qcommon)” on page]|

E Controls where uninitialized global variables are
allocated.

[“-geh (C++ only)” on page 117|

Controls whether exception handling is enabled in
the module being compiled.

[“-ginlglue” on page 128|

When used with -02 or higher optimization, inlines
glue code that optimizes external function calls in
your application.

[“~fPIC (-gpic)” on page 75|

Generates position-independent code required for use
in shared libraries.

“_qpriority (C++ only)” on page|
155 Specifies the priority level for the initialization of
static objects.

“-r” on page 17
Produces a nonexecutable output file to use as an
input file in another ld command call. This file may

also contain unresolved symbols.

|“-greserved_reg” on page 157

Indicates that the given list of registers cannot be
used during the compilation except as a stack pointer,
frame pointer or in some other fixed role.

[“-gro” on page 15§

Specifies the storage type for string literals.

[“-groconst” on page 160

Specifies the storage location for constant values.

|“-grtti, -fno-rtti (-qnortti) (C++
[only)” on page 161] Generates runtime type identification (RTTI)
information for exception handling and for use by the
typeid and dynamic_cast operators.

“-s” on page 17

Strips the symbol table, line number information, and
relocation information from the output file.

Chapter 3. Compiler options reference 33

Table 13. Object code control options (continued)

Option name

Description

[“-gsaveopt” on page 162

Saves the command-line options used for compiling a
source file, the user's configuration file name and the
options specified in the configuration files, the
version and level of each compiler component
invoked during compilation, and other information to
the corresponding object file.

[“~ftls-model (-qtls)” on page 83|

Enables recognition of the __thread storage class
specifier, which designates variables that are to be
allocated thread-local storage; and specifies the
threadlocal storage model to be used.

The following options are supported by XL C/C++ for GCC compatibility. For
details about these options, see the GNU Compiler Collection online

documentation at fhttp:/ /gcc.egnu.org/onlinedocs /|

* -fpack-struct
e -fPIE, -fno-PIE
¢ -fshort-wchar

Error checking and debugging

The options in this category allow you to detect and correct problems in your

source code. In some cases, these options can alter your object code, increase your
compile time, or introduce runtime checking that can slow down the execution of
your application. The option descriptions indicate how extra checking can impact

performance.

To control the amount and type of information you receive regarding the behavior
and performance of your application, consult the options in [“Listings, messages |

[and compiler information” on page 38

For information on debugging optimized code, see the XL C/C++ Optimization and

Programming Guide.

Table 14. Error checking and debugging options

Option name

Description

" (-#) (pound sign)” on page]|

)

Previews the compilation steps specified on the
command line, without actually invoking any compiler
components.

[-qcheck” on page 111]

Generates code that performs certain types of runtime
checking.

[“~ftrapping-math (-gflttrap)” onl|

lpage 81|

Determines what types of floating-point exceptions to
detect at run time.

[“-gfullpath” on page 121]

When used with the -g or -qlinedebug option, this
option records the full, or absolute, path names of
source and include files in object files compiled with
debugging information, so that debugging tools can
correctly locate the source files.

34 XL C/C++: Compiler Reference for Little Endian Distributions

http://gcc.gnu.org/onlinedocs/

Table 14. Error checking and debugging options (continued)

Option name

Description

1,

‘-o” on page 90

Generates debugging information for use by a symbolic
debugger, and makes the program state available to the
debugging session at selected source locations.

[“-Werror (-ghalt)” on page 66|

Stops compilation before producing any object,
executable, or assembler source files if the maximum
severity of compile-time messages equals or exceeds the
severity you specify.

[“-ginitauto” on page 125

Initializes uninitialized automatic variables to a specific
value, for debugging purposes.

|“-gkeepparm” on page 135

When used with -02 or higher optimization, specifies
whether procedure parameters are stored on the stack.

[“-glinedebug” on page 138

Generates only line number and source file name
information for a debugger.

[“~fsyntax-only (-gsyntaxonly) (C|
[only)” on page 79|

Performs syntax checking without generating an object
file.

[“-Wunsupported-xl-macro” on|

|Bage 188|

Checks whether any unsupported XL macro is used.

Options to Control Diagnostic Messages Formatting

The following options are supported by XL C/C++ for GCC compatibility. For
details about these options, see the GNU Compiler Collection online

documentation at |http:/ /gcc.gnu.org/onlinedocs /|

* -fmessage-length

* -fno-diagnostics-show-option

* -fno-diagnostics-show-caret
* -fshow-column

* -fshow-source-location

* -fcolor-diagnostics

* -fansi-escape-codes

* -fdiagnostics-format=[clang | msvc | vi]

* -fdiagnostics-show-name

* -fdiagnostic-show-category=[none |id | name]

* -fdiagnostics-fixit-info

* -fdiagnostics-print-source-range-info

* -fdiagnostic-parsable-fixits
* -fno-elide-type

* -fdiagnostic-show-template-tree

* -pedantic
* -pedantic-errors
* -Wextra-tokens

* -Wambiguous-member-template

Chapter 3. Compiler options reference 35

http://gcc.gnu.org/onlinedocs/

-Wbind-to-temporary-copy

Options to Request or Suppress Warnings

The following options are supported by XL C/C++ for GCC compatibility. For
details about these options, see the GNU Compiler Collection online
documentation at |http:/ /gcc.gnu.org/onlinedocs /|

-w
-Wfoo

-Weverything
-Werror=foo
-Wfatal-errors
-Wpedantic -pedantic -pedantic-errors
-Wall

-Wchar-subscripts
-Wcomment

-Wformat

-Wformat=n

-Wformat=2
-Wno-format
-Wno-format-extra-args
-Wno-format-zero-length
-Wformat-nonliteral
-Wformat-security
-Wformat-y2k
-Wnonnull
-Wimplicit-int
-Wimplicit-function-declaration
-Wimplicit
-Wignored-qualifiers
-Wmain
-Wmissing-braces
-Wparantheses
-Wsequence-point
-Wno-return-local-addr
-Wreturn-type

-Wswitch

-Wtrigraphs
-Wunused-label
-Wunused-parameter
-Wno-unused-result
-Wunused-variable
-Wunused-value
-Wunused
-Wuninitialized
-Wunknown-pragmas

36 XL C/C++: Compiler Reference for Little Endian Distributions

http://gcc.gnu.org/onlinedocs/

-Wno-division-by-zero
-Wsystem-headers
-Wfloat-equal

-Wundef
-Wno-endif-labels
-Wshadow
-Wpointer-arith
-Wtype-limits
-Wc++11-compat
-Wtautological-compare
-Wbad-function-cast
-Wecast-align
-Wwrite-strings
-Wconversion
-Wno-int-conversion
-Wempty-body
-Wenum-compare
-Wsign-compare
-Wsign-conversion
-Wsizeof-pointer-memaccess
-Wno-attributes
-Wno-builtin-macro-redefined
-Wmissing-prototypes
-Wmissing-field-initializers
-Wno-multichar
-Wno-deprecated
-Wno-deprecated-declarations
-Wno-invalid-offsetof
-Wpadded
-Wno-int-to-pointer-cast
-Wvariadic-macros
-Wvarargs

-Wvla

-Wpointer-sign
-Woverlength-strings
-Wdelete-non-virtual-dtor
-Wnon-virtual-dtor
-Wnarrowing

-Wreorder
-Woverloaded-virtual
-Wno-virtual-move-assign

-fsyntax-only

Chapter 3. Compiler options reference

37

Listings, messages, and compiler information

The options in this category allow you control over the listing file, as well as how
and when to display compiler messages. You can use these options in conjunction
with those described in [“Error checking and debugging” on page 34 to provide a
more robust overview of your application when checking for errors and
unexpected behavior.

Table 15. Listings and messages options

Option name Description

[“-fdump-class-hierarchy] ' '
[(-qdump_class_hierarchy) (C++ only)”] | Dumps a representation of the hierarchy and

on page 73 virtual function table layout of each class object to
a file.

[“-glist” on page 139

Produces a compiler listing file that includes object
and constant area sections.

[“-qreport” on page 156|

Produces listing files that show how sections of
code have been optimized.

[“--help (-ghelp)” on page 45| Displays the man page of the compiler.

[“--version (-qversion)” on page 46|

Displays the version and release of the compiler
being invoked.

Optimization and tuning

The options in this category allow you to control the optimization and tuning
process, which can improve the performance of your application at run time.

Remember that not all options benefit all applications. Trade-offs sometimes occur
between an increase in compile time, a reduction in debugging capability, and the
improvements that optimization can provide.

In addition to the option descriptions in this section, consult the XL C/C++
Optimization and Programming Guide for a details on the optimization and tuning
process as well as writing optimization-friendly source code.

Table 16. Optimization and tuning options

Option name Description

[*-finline-functions (-ginline)” on| | Attempts to inline functions instead of generating calls
IEage 74_1{ to those functions, for improved performance.

“_fstrict-aliasing (-qalias=ansi),|
-galias” on page 77| Indicates whether a program contains certain categories
of aliasing or does not conform to C/C++ standard
aliasing rules. The compiler limits the scope of some
optimizations when there is a possibility that different
names are aliases for the same storage location.

“_funroll-loops (-qunroll))
-funroll-all-loops (-qunroll=yes)”| |Controls loop unrolling, for improved performance.

on page 82|

| Equivalent pragma: #pragma unroll

38 XL C/C++: Compiler Reference for Little Endian Distributions

Table 16. Optimization and tuning options (continued)

Option name

Description

|“-fvisibility (-qvisibility)” on page|
|

Specifies the visibility attribute for external linkage
entities in object files. The external linkage entities have
the visibility attribute that is specified by the
-fvisibility option if they do not get visibility
attributes from pragma directives, explicitly specified
attributes, or propagation rules.

Equivalent pragma: #pragma GCC visibility push,
#pragma GCC visibility pop

|“-mcpu (-garch)” on page 101

Specifies the processor architecture for which the code
(instructions) should be generated.

-mtune (-gqtune

Tunes instruction selection, scheduling, and other
architecture-dependent performance enhancements to
run best on a specific hardware architecture. Allows
specification of a target SMT mode to direct
optimizations for best performance in that mode.

[“-O, -qoptimize” on page 58|

Specifies whether to optimize code during compilation
and, if so, at which level.

I“-p, -pg, -qprofile” on page 106|

Prepares the object files produced by the compiler for
profiling.

|“-gagercopy” on page 107]

Enables destructive copy operations for structures and
unions.

|“-gcache” on page 10|

Specifies the cache configuration for a specific execution
machine.

[“-gcompact” on page 114

Avoids optimizations that increase code size.

“-qdataimported, -qdatalocal |
-gtocdata” on page 115|

Marks data as local or imported.

[“-gdirectstorage” on page 116}

Informs the compiler that a given compilation unit may
reference write-through-enabled or cache-inhibited
storage.

[“-ghot” on page 122|

Performs high-order loop analysis and transformations
(HOT) during optimization.

Equivalent pragma: #pragma nosimd

[“-gignerrno” on page 125

Allows the compiler to perform optimizations as if
system calls would not modify errno.

|“-gipa” on page 129|

Enables or customizes a class of optimizations known
as interprocedural analysis (IPA).

|“-gisolated_call” on page 134|

Specifies functions in the source file that have no side
effects other than those implied by their parameters.

Chapter 3. Compiler options reference 39

Table 16. Optimization and tuning options (continued)

Option name Description

[“-glibansi” on page 137]

Assumes that all functions with the name of an ANSI C
library function are in fact the system functions.

[-gqmaxmem” on page 140|

Limits the amount of memory that the compiler
allocates while performing specific, memory-intensive
optimizations to the specified number of kilobytes.

[“-qpdfl, -qpdf2” on page 144|

Tunes optimizations through profile-directed feedback
(PDF), where results from sample program execution
are used to improve optimization near conditional
branches and in frequently executed code sections.

[“-gprefetch” on page 152

Inserts prefetch instructions automatically where there
are opportunities to improve code performance.

[“-gshowpdf” on page 164

When used with -qpdfl and a minimum optimization
level of -02 at compile and link steps, creates a PDF
map file that contains additional profiling information
for all procedures in your application.

[“-gsimd” on page 165 Controls whether the compiler can automatically take
advantage of vector instructions for processors that
support them.

Equivalent pragma: #pragma nosimd

[“-gsmallstack” on page 166

Reduces the size of the stack frame.

[“-gstrict” on page 170|

Ensures that optimizations done by default at the -03
and higher optimization levels, and, optionally at -02,
do not alter the semantics of a program.

[“-gstrict_induction” on page 174

Prevents the compiler from performing induction (loop
counter) variable optimizations. These optimizations
may be unsafe (may alter the semantics of your
program) when there are integer overflow operations
involving the induction variables.

[“-qunwind” on page 176

Specifies whether the call stack can be unwound by
code looking through the saved registers on the stack.

The following options are supported by XL C/C++ for GCC compatibility. For
details about these options, see the GNU Compiler Collection online
documentation at fhttp:/ /gcc.egnu.org/onlinedocs /|

* -isysroot
* --sysroot
* -isystem

Linking
Though linking occurs automatically, the options in this category allow you to

direct input and output to the linker, controlling how the linker processes your
object files.

40 XL C/C++: Compiler Reference for Little Endian Distributions

http://gcc.gnu.org/onlinedocs/

Table 17. Linking options

Option name Description

14

-gcrt, -nostartfiles (-qnocrt)” on|
age 11 Specifies whether system startup files are to be linked.

“-e” on page 6
When used together with the -shared (-qmkshrobj),

specifies an entry point for a shared object.

II_LVV On ae 5
At link time, searches the directory path for library files

specified by the -1 option.

! E
\O)

“-1” on page 9
Searches for the specified library file. The linker

searches for libkey.so, and then libkey.a if libkey.so is not
found.

[“-qlib, -nodefaultlibs (-qnolib)”|
on page 136

Specifies whether standard system libraries and XL
C/C++ libraries are to be linked.

ik

“-R” on page 62
At link time, writes search paths for shared libraries into

the executable, so that these directories are searched at
program run time for any required shared libraries.

“_static (-gstaticlink)” on page|

Controls whether static or shared runtime libraries are
linked into an application.

z| E

W.

Passes the listed options to the linker.

The following options are supported by XL C/C++ for GCC compatibility. For
details about these options, see the GNU Compiler Collection online
documentation at |http:/ /gcc.gnu.org/onlinedocs /|

-idirafter

-imacros

-iprefix

-iwithprefix

-iquote
-pie
-rdynamic

-Xlinker option

Portability and migration

The options in this category can help you maintain application behavior
compatibility on past, current, and future hardware, operating systems and
compilers, or help move your applications to an XL compiler with minimal change.

Table 18. Portability and migration options

Option name Description

“_fpack-struct (-galign)” on pagel|
76 Specifies the alignment of data objects in storage, which

avoids performance problems with misaligned data.

Chapter 3. Compiler options reference 41

http://gcc.gnu.org/onlinedocs/

Compiler customization

The options in this category allow you to specify alternative locations for compiler
components, configuration files, standard include directories, and internal compiler
operation. These options are useful for specialized installations, testing scenarios,
and the specification of additional command-line options.

Table 19. Compiler customization options

Option name

Description

[“@file (-qoptfile)” on page 47|

Specifies a response file that contains a list of additional
command line options to be used for the compilation.
Response files typically have the .rsp suffix.

“-B” on page 50

Specifies substitute path names for XL C/C++
components such as the assembler, C preprocessor, and
linker.

“-F” on page 54

Names an alternative configuration file or stanza for the
compiler.

“-t” on page 185

Applies the prefix specified by the -B option to the
designated components.

[“-X (-W)” on page 65|

Passes the listed options to a component that is executed
during compilation.

[“-gasm_as” on page 107

Specifies the path and flags used to invoke the assembler
in order to handle assembler code in an asm assembly
statement.

[“-isystem (-gc_stdinc) (C only)”]

|0n page 93|

Changes the standard search location for the XL C
header files.

[“-isystem (-qcpp_stdinc) (C++
[only)” on page 95|

Changes the standard search location for the XL C++
header files.

[“-isystem (-ggcc_c_stdinc) (C|
[only)” on page 96|

Changes the standard search location for the GNU C
system header files.

[“-isystem (-qgcc_cpp_stdinc)|
[(C++ only)” on page 97|

Changes the standard search location for the GNU C++
system header files.

[“-gpath” on page 143

Specifies substitute path names for XL C/C++
components such as the compiler, assembler, linker, and
preprocessor.

[“-gspill” on page 167]

Specifies the size (in bytes) of the register spill space, the
internal program storage areas used by the optimizer for
register spills to storage.

Individual option descriptions

This section contains descriptions of the individual compiler options available in

XL C/C++.

For each option, the following information is provided:

42 XL C/C++: Compiler Reference for Little Endian Distributions

Category
The functional category to which the option belongs is listed here.

Pragma equivalent
Many compiler options allow you to use an equivalent pragma directive to
apply the option's functionality within the source code, limiting the scope
of the option's application to a single source file, or even selected sections
of code.

When an option supports the #pragma name form of the directive, this is
indicated.

Purpose
This section provides a brief description of the effect of the option (and
equivalent pragmas), and why you might want to use it.

Syntax
This section provides the syntax for the option, and where an equivalent
#pragma name is supported, the specific syntax for the pragma.

Note that you can also use the C99-style _Pragma operator form of any
pragma; although this syntax is not provided in the option descriptions.
For comi lete details on pragma syntax, see [“Pragma directive syntax” on|

Defaults
In most cases, the default option setting is clearly indicated in the syntax
diagram. However, for many options, there are multiple default settings,
depending on other compiler options in effect. This section indicates the
different defaults that may apply.

Parameters
This section describes the suboptions that are available for the option and
pragma equivalents, where applicable. For suboptions that are specific to
the command-line option or to the pragma directive, this is indicated in the
descriptions.

Usage This section describes any rules or usage considerations you should be
aware of when using the option. These can include restrictions on the
option's applicability, valid placement of pragma directives, precedence
rules for multiple option specifications, and so on.

Predefined macros
Many compiler options set macros that are protected (that is, cannot be
undefined or redefined by the user). Where applicable, any macros that are
predefined by the option, and the values to which they are defined, are
listed in this section. A reference list of these macros (as well as others that
are defined independently of option setting) is provided in
[“Compiler predefined macros,” on page 211|

Examples
Where appropriate, examples of the command-line syntax and pragma
directive use are provided in this section.

-### (-#) (pound sign)
Category

[Error checking and debugging]

Chapter 3. Compiler options reference 43

Pragma equivalent
None.
Purpose

Previews the compilation steps specified on the command line, without actually
invoking any compiler components.

When this option is enabled, information is written to standard output, showing
the names of the programs within the preprocessor, compiler, and linker that
would be invoked, and the default options that would be specified for each
program. The preprocessor, compiler, and linker are not invoked.

Syntax
b >
> >
Usage

You can use this command to determine the commands and files that will be
involved in a particular compilation. It avoids the overhead of compiling the
source code and overwriting any existing files, such as .Ist files.

This option displays the same information as -v, but does not invoke the compiler.
The -### (-#) option overrides the -v option.

Predefined macros
None.
Examples

To preview the steps for the compilation of the source file myprogram.c, enter:
x1c myprogram.c -###

Related information
* |“-v, -V” on page 186

-+ (plus sign) (C++ only)
Category

nput contro

Pragma equivalent

None.

44 XL C/C++: Compiler Reference for Little Endian Distributions

Purpose

Compiles any file as a C++ language file.

This option is equivalent to the -x c++ option.
Syntax

[— >

Usage

You can use -+ to compile a file with any suffix other than .a, .0, .so, .S or .s. If you
do not use the -+ option, files must have a suffix of .C (uppercase C), .cc, .cp, .cpp,
.CxX, or .c++ to be compiled as a C++ file. If you compile files with suffix .c
(lowercase c) without specifying -+, the files are compiled as a C language file.
You cannot use the -+ option with the -qsourcetype or -x option.

Predefined macros

None.

Examples

To compile the file myprogram.cplspls as a C++ source file, enter:
x1c -+ myprogram.cplspls

Related information
* |“-x (-gqsourcetype)” on page 189

--help (-qhelp)
Category

[Listings, messages, and compiler information|

Pragma equivalent
None.
Purpose

Displays the man page of the compiler.

Syntax
»»— --help »><
»»— -g—help > <

Chapter 3. Compiler options reference 45

Usage

If you specify the --help (-ghelp) option, regardless of whether you provide
input files, the compiler man page is displayed and the compilation stops.

Predefined macros
None.

Related information

* [“--version (-qversion)”|

--version (-qversion)
Category

[Listings, messages, and compiler information|

Pragma equivalent

None.

Purpose

Displays the version and release of the compiler being invoked.
Syntax

»>— —-version >«

[noversion—|
»— -(version ><

|—=—verbose—|

Defaults
-qnoversion
--version not set by default.

Parameters

verbose
Displays information about the version, release, and level of each compiler
component installed.

Usage

When you specify --version (-qversion), the compiler displays the version
information and exits; compilation is stopped. If you want to save this information
to the output object file, you can do so with the -gsaveopt -c options.

-qversion specified without the verbose suboption shows compiler information in
the format:

product_nameVersion: VV.RR.MMMM. LLLL

46 XL C/C++: Compiler Reference for Little Endian Distributions

where:

Represents the version.
Represents the release.
Represents the modification.
Represents the level.

For more details, see

-qversion=verbose shows component information in the following format:

2R <

component_name Version: VV.RR(product_name) Level: component build date ID:
component_level_ID

where:
component_name

Specifies an installed component, such as the low-level optimizer.
component_build_date

Represents the build date of the installed component.
component_level _ID

Represents the ID associated with the level of the installed component.

For more details, see [Example 2

Predefined macros
None.
Example 1

The output of specifying the --version (-qversion) option:

IBM XL C/C++ for Linux, V13.1.1 (5725-C73, 5765-J08)
Version: 13.01.0001.0000

Example 2

The output of specifying the -qversion=verbose option:

IBM XL C/C++ for Linux, V13.1.1 (5725-C73, 5765-J08)

Version: 13.01.0000.0001

Version: 13.01.0001.0000

Driver Version: 13.01(C/C++) Level: 140912

ID: _J5rfgDgqEeSrZfWh7nIORA

C/C++ Front End Version: 01.01(C/C++) Level: 140913

ID: _Kz9_wjuiEeSrZfWh7nIORA

High-Level Optimizer Version: 13.01(C/C++) and 15.01(Fortran) Level: 140911
ID: _JglehjniEeSrZfWh7nIORA

Low-Level Optimizer Version: 13.01(C/C++) and 15.01(Fortran) Level: 140912
ID: _J6Z4MjqqEeSrZfWh7nIORA

Related information
* |“-gsaveopt” on page 162|

@file (-qoptfile)

Category

[Compiler customization|

Chapter 3. Compiler options reference

47

Pragma equivalent
None.
Purpose

Specifies a response file that contains a list of additional command line options to
be used for the compilation. Response files typically have the .rsp suffix.

Syntax

v
A

»»— @—filename

A\
A

»»— -q—optfile—=—filename

Defaults
None.

Parameters

filename
Specifies the name of the response file that contains a list of additional
command line options. filename can contain a relative path or absolute path, or
it can contain no path. It is a plain text file with one or more command line
options per line.

Usage

The format of the response file follows these rules:

* Specify the options you want to include in the file with the same syntax as on
the command line. The response file is a whitespace-separated list of options.
The following special characters indicate whitespace: \n, \v, \t. (All of these
characters have the same effect.)

* A character string between a pair of single or double quotation marks are passed
to the compiler as one option.

* You can include comments in the response file. Comment lines start with the #
character and continue to the end of the line. The compiler ignores comments
and empty lines.

When processed, the compiler removes the @file (-qoptfile) option from the
command line, and sequentially inserts the options included in the file before the
other subsequent options that you specify.

The @file (-qoptfile) option is also valid within a response file. The files that
contain another response file are processed in a depth-first manner. The compiler
avoids infinite loops by detecting and ignoring cycles in response file inclusion.

If @file (-qoptfile) and -qsaveopt are specified on the same command line, the
original command line is used for -qsaveopt. A new line for each response file is
included representing the contents of each response file. The options contained in
the file are saved to the compiled object file.

48 XL C/C++: Compiler Reference for Little Endian Distributions

Predefined macros
None.
Example 1

This is an example of specifying a response file.

$ cat options.file

To perform optimization at -03 level, and high-order
loop analysis and transformations during optimization
-03 -ghot

To generate position-independent code

-fPIC

$ x1C -qlist @options.file -gipa test.c

The preceding example is equivalent to the following invocation:
$ x1C -qlist -03 -ghot -fPIC -gipa test.c

Example 2

This is an example of specifying a response file that contains @file (-qoptfile) with

a cycle.

$ cat options.filel

To perform optimization at -03 level, and high-order

loop analysis and transformations during optimization

-03 -ghot

To include the -qoptfile option in the same response file
@options.filel

To generate position-independent code

-fPIC

To produce a compiler listing file

-qlist

$ x1C -qlist @options.filel -gipa test.c

The preceding example is equivalent to the following invocation:
$ x1C -qlist -03 -ghot -fPIC -qlist -gipa test.c

Example 3

This is an example of specifying a response file that contains @file (-qoptfile)
without a cycle.

$ cat options.filel
-03 -ghot
@options.file2
-galias=ansi

$ cat options.file2
-qchars=signed

$ x1C @options.filel test.c

The preceding example is equivalent to the following invocation:
$ x1C -03 -ghot -galias=ansi -qchars=signed test.c

Chapter 3. Compiler options reference

49

Example 4

This is an example of specifying -qsaveopt and @file (-qoptfile) on the same
command line.
$ cat options.file3

-03
-ghot

$ x1C -gsaveopt -gipa @options.file3 test.c -c

$ what test.o

test.o:

opt f x1C -gsaveopt -qipa @options.file3 test.c -c
optfile options.file3 -03 -ghot

Related information
+ ["-gsaveopt” on page 162

Category

[Compiler customization|

Pragma equivalent
None.
Purpose

Specifies substitute path names for XL C/C++ components such as the assembler,
C preprocessor, and linker.

You can use this option if you want to keep multiple levels of some or all of the
XL C/C++ executables and have the option of specifying which one you want to
use. However, it is preferred that you use the [-gpath| option to accomplish this
instead.

Syntax

»»— -B >«

I—prefix—l

Defaults

The default paths for the compiler executables are defined in the compiler
configuration file.

Parameters

prefix
Defines part of a path name for programs you can name with the -t option.
You must add a slash (/). If you specify the -B option without the prefix, the
default prefix is /lib/o.

50 XL C/C++: Compiler Reference for Little Endian Distributions

Usage

The -t option specifies the programs to which the -B prefix name is to be
appended; see|“-t” on page 185|for a list of these. If you use the -B option without
-tprograms, the prefix you specify applies to all of the compiler executables.

The -B and -t options override the -F option.
Predefined macros

None.

Examples

In this example, an earlier level of the compiler components is installed in the
default installation directory. To test the upgraded product before making it
available to everyone, the system administrator restores the latest installation
image under the directory /home/jim and then tries it out with commands similar
to:

x1c -tcbI -B/home/jim/opt/ibm/x1C/13.1.1/bin/ test_suite.c

Once the upgrade meets the acceptance criteria, the system administrator installs it
in the default installation directory.

Related information

+ |“-gpath” on page 143|

s ["-t” on page 185|

* |“Invoking the compiler” on page 1

* The -B option that GCC provides. For details, see the GCC online
documentation at fhttp:/ /gcc.gnu.org/onlinedocs /|

-C, -C!
Category

Pragma equivalent
None.
Purpose

When used in conjunction with the -E or -P options, preserves or removes
comments in preprocessed output.

When -C is in effect, comments are preserved. When -C! is in effect, comments are
removed.

Syntax

o [o

Chapter 3. Compiler options reference 51

http://gcc.gnu.org/onlinedocs/

Defaults

-C

Usage

The -C option has no effect without either the -E or the -P option. If -E is specified,
continuation sequences are preserved in the output. If -P is specified, continuation

sequences are stripped from the output, forming concatenated output lines.

You can use the -C! option to override the -C option specified in a default makefile
or configuration file.

Predefined macros
None.
Examples

To compile myprogram.c to produce a file myprogram.i that contains the
preprocessed program text including comments, enter:

x1c myprogram.c -P -C

Related information
* |”-E” on page 53
* |”-P” on page 61

Category

[Language element control|

Pragma equivalent

None.

Purpose

Defines a macro as in a #define preprocessor directive.

Syntax

Y
A

»»— -D—name
|—=—definition—|
Defaults

Not applicable.

Parameters

name
The macro you want to define. -Dname is equivalent to #define name. For
example, -DCOUNT is equivalent to #define COUNT.

52 XL C/C++: Compiler Reference for Little Endian Distributions

definition
The value to be assigned to name. -Dname=definition is equivalent to #define
name definition. For example, -DCOUNT=100 is equivalent to #define COUNT
100.

Usage

Using the #define directive to define a macro name already defined by the -D
option will result in an error condition.

The -Uname option, which is used to undefine macros defined by the -D option, has
a higher precedence than the -Dname option.

Predefined macros

The compiler configuration file uses the -D option to predefine several macro
names for specific invocation commands. For details, see the configuration file for
your system.

Examples

To specify that all instances of the name COUNT be replaced by 100 in myprogram.c,
enter:

x1c myprogram.c -DCOUNT=100

Related information
+ |[“-U” on page 64|
* |Chapter 5, “Compiler predefined macros,” on page 211

Category

Pragma equivalent

None.

Purpose

Preprocesses the source files named in the compiler invocation, without compiling.
Syntax

»»— -E »><

Defaults

By the default, source files are preprocessed, compiled, and linked to produce an
executable file.

Chapter 3. Compiler options reference 53

Usage

Source files with unrecognized file name suffixes are treated and preprocessed as C
files.

#11ine directives are generated to preserve the source coordinates of the tokens.
Continuation sequences are preserved.

Unless -C is specified, comments are replaced in the preprocessed output by a
single space character. New lines and #11ine directives are issued for comments that
span multiple source lines.

The -E option overrides the -P and -fsyntax-only (-qsyntaxonly) options. The
combination of -E -0 stores the preprocessed result in the file specified by -o.

Predefined macros
None.
Examples

To compile myprogram.c and send the preprocessed source to standard output,
enter:

x1c myprogram.c -E

If myprogram.c has a code fragment such as:

#define SUM(x,y) (x +y)
int a ;
#define mm 1 /* This is a comment in a
preprocessor directive */
int b ; /* This is another comment across
two lines */
int ¢ ;
/* Another comment =/
c = SUM(a, /* Comment in a macro function argumentx/
b)

the output will be:

#1ine 2 "myprogram.c"
int a ;
#1line 5
int b ;

int ¢ ;
c=a+hb;

Related information

+ |"-C, -C!” on page 51|

s [-P” on page 61|

» |“-fsyntax-only (-gsyntaxonly) (C only)” on page 79

Category

[Compiler customization|

54 XL C/C++: Compiler Reference for Little Endian Distributions

Pragma equivalent

None.

Purpose

Names an alternative configuration file or stanza for the compiler.
Note: This option is not equivalent to the -F option that GCC provides.

Syntax

A\
A

»»— -F file_path |_ _|
:—stanza

:—stanza

Defaults

By default, the compiler uses the configuration file that is configured at installation
time, and uses the stanza defined in that file for the invocation command currently
being used.

Parameters

file path
The full path name of the alternate compiler configuration file to use.

stanza
The name of the configuration file stanza to use for compilation. This directs
the compiler to use the entries under that stanza regardless of the invocation
command being used. For example, if you are compiling with xlc, but you
specify the ¢99 stanza, the compiler will use all the settings specified in the ¢99
stanza.

Usage

Note that any file names or stanzas that you specify with the -F option override
the defaults specified in the system configuration file. If you have specified a
custom configuration file with the XLC_USR_CONFIG environment variable, that
file is processed before the one specified by the -F option.

The -B, -t, and -W options override the -F option.
Predefined macros

None.

Examples

To compile myprogram.c using a stanza called debug that you have added to the
default configuration file, enter:

x1c myprogram.c -F:debug

To compile myprogram.c using a configuration file called /usr/tmp/myconfig.cfg,
enter:

x1c myprogram.c -F/usr/tmp/myconfig.cfg

Chapter 3. Compiler options reference 55

To compile myprogram.c using the stanza c99 you have created in a configuration
file called /usr/tmp/myconfig.cfg, enter:

x1c myprogram.c -F/usr/tmp/myconfig.cfg:x1f95c99

Related information

* |“Using custom compiler configuration files” on page 19|

* [“-B” on page 50|

* [“-t” on page 18|

+ [“-X (-W)” on page 65|

* [“Specifying compiler options in a configuration file” on page 5|

* |“Compile-time and link-time environment variables” on page 18|

Category

Pragma equivalent

None.

Purpose

Adds a directory to the search path for include files.

Syntax

»»— -I—directory_path ><

Defaults

See [“Directory search sequence for include files” on page §| for a description of the
default search paths.

Parameters

directory_path
The path for the directory where the compiler should search for the header
files.

Usage

If -nostdinc or -nostdinc++ (-gnostdinc) is in effect, the compiler searches only the
paths specified by the -I option for header files, and not the standard search paths
as well. If -qidirfirst is in effect, the directories specified by the -I option are
searched before any other directories.

If the -I directory option is specified both in the configuration file and on the
command line, the paths specified in the configuration file are searched first. The
-I directory option can be specified more than once on the command line. If you
specify more than one -I option, directories are searched in the order that they
appear on the command line.

The -I option has no effect on files that are included using an absolute path name.

56 XL C/C++: Compiler Reference for Little Endian Distributions

Predefined macros
None.
Examples

To compile myprogram.c and search /usr/tmp and then /oldstuff/history for
included files, enter:

x1c myprogram.c -I/usr/tmp -I/oldstuff/history

Related information

* |“-gstdinc, -gnostdinc (-nostdinc, -nostdinc++)” on page 169

+ [“-include (-ginclude)” on page 92|

* [“Directory search sequence for include files” on page 8|

+ [“Specifying compiler options in a configuration file” on page 5|

Category

Pragma equivalent

None.

Purpose

At link time, searches the directory path for library files specified by the -1 option.

Syntax

v
A

»»— -L—directory_path

Defaults

The default is to search only the standard directories. See the compiler
configuration file for the directories that are set by default.

Parameters

directory path
The path for the directory which should be searched for library files.

Usage

Paths specified with the -L compiler option are only searched at link time. To
specify paths that should be searched at run time, use the -R option.

If the -Ldirectory option is specified both in the configuration file and on the
command line, search paths specified in the configuration file are the first to be
searched at link time.

The -L compiler option is cumulative. Subsequent occurrences of -L on the
command line do not replace, but add to, any directory paths specified by earlier
occurrences of -L.

Chapter 3. Compiler options reference 57

For more information, refer to the 1d documentation for your operating system.
Predefined macros

None.

Examples

To compile myprogram.c so that the directory /usr/tmp/ol1d is searched for the
library Tibspfiles.a, enter:

x1c myprogram.c -1spfiles -L/usr/tmp/old

Related information
* |“-1” on page 99
+ ["-R” on page 62|

-0, -qoptimize
Category

[Optimization and tuning]|

Purpose
Specifies whether to optimize code during compilation and, if so, at which level.

Syntax

noopt

’:nooptimizc
»— - optimize

Cone " T 1

v
A

oS w NN o

— -00
— -0
— -02
— -03
— -04
L -05

Defaults
-gnooptimize or -00 or -qoptimize=0

Parameters

-00 | nooptimize | noopt | optimize|opt=0
Performs only quick local optimizations such as constant folding and
elimination of local common subexpressions.
This setting implies -qstrict_induction unless -gnostrict_induction is
explicitly specified.

-0 | -02 | optimize | opt | optimize|opt=2
Performs optimizations that the compiler developers considered the best

58 XL C/C++: Compiler Reference for Little Endian Distributions

combination for compilation speed and runtime performance. The
optimizations may change from product release to release. If you need a
specific level of optimization, specify the appropriate numeric value.

This setting implies -qstrict and -gnostrict_induction, unless explicitly
negated by -gstrict_induction or -qnostrict.

-03 | optimize|opt=3
Performs additional optimizations that are memory intensive, compile-time
intensive, or both. They are recommended when the desire for runtime
improvement outweighs the concern for minimizing compilation resources.

-03 applies the -02 level of optimization, but with unbounded time and
memory limits. -03 also performs higher and more aggressive optimizations
that have the potential to slightly alter the semantics of your program. The
compiler guards against these optimizations at -02. The aggressive
optimizations performed when you specify -03 are:

1. Both -02 and -03 conform to the following IEEE rules.

With -02 certain optimizations are not performed because they may
produce an incorrect sign in cases with a zero result, and because they
remove an arithmetic operation that may cause some type of floating-point
exception.

For example, X + 0.0 is not folded to X because, under IEEE rules, -0.0 +
0.0 = 0.0, which is -X. In some other cases, some optimizations may
perform optimizations that yield a zero result with the wrong sign. For
example, X - Y * Z may result in a -0.0 where the original computation
would produce 0.0.

In most cases the difference in the results is not important to an application
and -03 allows these optimizations.

2. Specifying -03 implies -qhot=1evel=0, unless you explicitly specify -qhot or
-ghot=1evel=1 option.

-qfloat=rsqrt is set by default with -03.

-gmaxmem=-1 is set by default with -03, allowing the compiler to use as much
memory as necessary when performing optimizations.

Built-in functions do not change errno at -03.

Integer divide instructions are considered too dangerous to optimize even at
-03.

Refer to [“~ftrapping-math (-gflttrap)” on page 81| to see the behavior of the
compiler when you specify optimize options with the -ftrapping-math
(-qf1ttrap) option.

You can use the -qstrict and -gstrict_induction compiler options to turn off
effects of -03 that might change the semantics of a program. Specifying
-gstrict together with -03 invokes all the optimizations performed at -02 as
well as further loop optimizations. Reference to the -gstrict compiler option
can appear before or after the -03 option.

The -03 compiler option followed by the -0 option leaves -qignerrno on.

When -03 and -qhot=Tevel=1 are in effect, the compiler replaces any calls in
the source code to standard math library functions with calls to the equivalent
MASS library functions, and if possible, the vector versions.

-04 | optimize|opt=4
This option is the same as -03, except that it also:

Chapter 3. Compiler options reference 59

* Sets the -mcpu and -mtune options to the architecture of the compiling
machine

* Sets the -qcache option most appropriate to the characteristics of the
compiling machine

* Sets the -qhot option

* Sets the -qipa option

Note: Later settings of -0, -qcache, -ghot, -qipa, -mcpu, and -mtune options
will override the settings implied by the -04 option.

This option follows the "last option wins" conflict resolution rule, so any of the
options that are modified by -04 can be subsequently changed.

-05 | optimize|opt=5
This option is the same as -04, except that it:

* Sets the -qipa=level=2 option to perform full interprocedural data flow and
alias analysis.

Note:

Later settings of -0, -qcache, -qipa, -mcpu, and -mtune options will override the
settings implied by the -05 option.

Usage

Increasing the level of optimization may or may not result in additional
performance improvements, depending on whether additional analysis detects
further opportunities for optimization.

Compilations with optimizations may require more time and machine resources
than other compilations.

Optimization can cause statements to be moved or deleted, and generally should
not be specified along with the -g flag for debugging programs. The debugging
information produced may not be accurate.

If optimization level -03 or higher is specified on the command line, the -ghot and
-qipa options that are set by the optimization level cannot be overridden by
#pragma option_override(identifier, "opt(level, 0)") or #pragma
option_override(identifier, "opt(level, 2)").

Predefined macros

« __OPTIMIZE__ is predefined to 2 when -0 | 02 is in effect; it is predefined to 3
when -O3 | O4 | O5 is in effect. Otherwise, it is undefined.

* _ OPTIMIZE_SIZE__ is predefined to 1 when -O | -O2 | -O3 | -O4 | -O5 and
-qgcompact are in effect. Otherwise, it is undefined.

Examples

To compile and optimize myprogram.c, enter:
x1c myprogram.c -03

Related information
* [“-ghot” on page 122
* [“-gipa” on page 129

60 XL C/C++: Compiler Reference for Little Endian Distributions

* |“-gpdfl, -qpdf2” on page 144

* [“-gstrict” on page 170|

+ |'Optimizing your applications'|in the XL C/C++ Optimization and Programming
Guide.

+ [“#pragma option_override” on page 199|

Category

Pragma equivalent
None.

Purpose

Preprocesses the source files named in the compiler invocation, without compiling,
and creates an output preprocessed file for each input file.

The preprocessed output file has the same name as the input file but with a .i
suffix.

Note: This option is not equivalent to the -P option that GCC provides.
Syntax

»»— -P

v
A

Defaults

By default, source files are preprocessed, compiled, and linked to produce an
executable file.

Usage

Source files with unrecognized file name suffixes are preprocessed as C files except
those with a .i suffix.

#1ine directives are not generated.
Line continuation sequences are removed and the source lines are concatenated.

The -P option retains all white space including line-feed characters, with the
following exceptions:

* All comments are reduced to a single space (unless -C is specified).
* Line feeds at the end of preprocessing directives are not retained.

* White space surrounding arguments to function-style macros is not retained.

The -P option is overridden by the -E option. The -P option overrides the -c, -o,
and -fsyntax-only (-gsyntaxonly) option.

Chapter 3. Compiler options reference 61

Predefined macros
None.

Related information

* |"-C, -C!” on page 51|

* [“-E” on page 53]

+ ["-fsyntax-only (-gsyntaxonly) (C only)” on page 79|

Category

Pragma equivalent

None.

Purpose

At link time, writes search paths for shared libraries into the executable, so that
these directories are searched at program run time for any required shared

libraries.

Syntax

»»— -R—directory_path >

Defaults

The default is to include only the standard directories. See the compiler
configuration file for the directories that are set by default.

Usage

If the -Rdirectory_path option is specified both in the configuration file and on the
command line, the paths specified in the configuration file are searched first at run
time.

The -R compiler option is cumulative. Subsequent occurrences of -R on the
command line do not replace, but add to, any directory paths specified by earlier
occurrences of -R.

Predefined macros

None.

Examples

To compile myprogram.c so that the directory /usr/tmp/old is searched at run time
along with standard directories for the dynamic library Tibspfiles.so, enter:

xTc myprogram.c -1spfiles -R/usr/tmp/old

62 XL C/C++: Compiler Reference for Little Endian Distributions

Related information
* [“-L” on page 57|

Category

Pragma equivalent

None.

Purpose

Generates an assembler language file for each source file.

The resulting file has a .s suffix and can be assembled to produce object .o files or
an executable file (a.out).

Syntax

»»— -S

v
A

Defaults
Not applicable.
Usage

You can invoke the assembler with any compiler invocation command. For
example,

x1c myprogram.s

will invoke the assembler, and if successful, the linker to create an executable file,
a.out.

If you specify -S with -E or -P, -E or -P takes precedence. Order of precedence
holds regardless of the order in which they were specified on the command line.

You can use the -0 option to specify the name of the file produced only if no more
than one source file is supplied. For example, the following is not valid:

x1c myprograml.c myprogram2.c -0 -S
Predefined macros

None.

Examples

To compile myprogram.c to produce an assembler language file myprogram.s, enter:
x1c myprogram.c -S

To assemble this program to produce an object file myprogram.o, enter:
x1c myprogram.s -c

Chapter 3. Compiler options reference 63

To compile myprogram.c to produce an assembler language file asmprogram.s, enter:
x1c myprogram.c -S -0 asmprogram.s

Related information
* |”-E” on page 53
* |”-P” on page 61

Category

[Language element control|

Pragma equivalent

None.

Purpose

Undefines a macro defined by the compiler or by the -D compiler option.

Syntax

v
A

»»— -U—name

Defaults

Many macros are predefined by the compiler; see [Chapter 5, “Compiler predefined|
[macros,” on page 211 for those that can be undefined (that is, are not protected).
The compiler configuration file also uses the -D option to predefine several macro
names for specific invocation commands; for details, see the configuration file for
your system.

Parameters

name
The macro you want to undefine.

Usage

The -U option is not equivalent to the #undef preprocessor directive. It cannot
undefine names defined in the source by the #define preprocessor directive. It can
only undefine names defined by the compiler or by the -D option.

The -Uname option has a higher precedence than the -Dname option.

Predefined macros

None.

Examples

Assume that your operating system defines the name __unix, but you do not want
your compilation to enter code segments conditional on that name being defined,
compile myprogram.c so that the definition of the name __unix is nullified by
entering:

64 XL C/C++: Compiler Reference for Little Endian Distributions

x1c myprogram.c -U__unix

Related information
+ [“-D” on page 52|

-X (-W)
Category

[Compiler customization|

Pragma equivalent
None.
Purpose

Passes the listed options to a component that is executed during compilation.

Syntax
»—-X—Y——assembler option ><
Epreprocessor—
linker———
»— -——a Y, —option ><
L h—|
C
L c—
L d—
1
L
L1
p
Parameters
option

Any option that is valid for the component to which it is being passed.

Note: For -X, for details about the options for linking and assembling, see the

GNU Compiler Collection online documentation at |http://gcc.gnu.org /|

The following table shows the correspondence between -X or -W parameters and
the component names:

Parameter of -W Parameter of -X Description Component name
assembler The assembler as
b The low-level x1Ccode
optimizer

Chapter 3. Compiler options reference 65

http://gcc.gnu.org/onlinedocs/
http://gcc.gnu.org/onlinedocs/

Parameter of -W Parameter of -X Description Component name

c, C The C and C++ xlCentry
compiler front end

d The disassembler dis

I (uppercase i) The high-level ipa
optimizer, compile
step

L The high-level ipa
optimizer, link step

1 (lowercase L) linker The linker 1d

P preprocessor The preprocessor xICentry

Usage

In the string following the -W option, use a comma as the separator for each
option, and do not include any spaces. For the -X option, one space is needed
before the option. If you need to include a character that is special to the shell in
the option string, precede the character with a backslash. For example, if you use
the -X or -W option in the configuration file, you can use the escape sequence
backslash comma (\,) to represent a comma in the parameter string.

You do not need the -X or -W option to pass most options to the linker 1d;
unrecognized command-line options, except -q options, are passed to it
automatically. Only linker options with the same letters as compiler options, such

as -v or =S, strictly require -X or -W.

Predefined macros

None.

Examples

To compile the file file.c and pass the linker option -symbolic to the linker, enter
the following command:

x1c -XTinker -symbolic file.c

To compile the file uses_many_symbols.c and the assembly file

produces_warnings.s so that produces_warnings.s is assembled with the assembler
option -alh, and the object files are linked with the option -s (write list of object
files and strip final executable file), issue the following command:

x1c -Xassembler -alh produces_warnings.s -Xlinker -s uses_many_symbols.c

Related information

* |“Invoking the compiler” on page 1

-Werror (-qhalt)

Category

[Error checking and debugging]

66 XL C/C++: Compiler Reference for Little Endian Distributions

Purpose
Stops compilation before producing any object, executable, or assembler source
files if the maximum severity of compile-time messages equals or exceeds the

severity you specify.

Syntax

»>—-lerror »><

v
A

»>—-ghalt—=w

Defaults
By default, -Werror (-ghalt=w) is not enabled.

Parameters

w Specifies that compilation is to stop for warnings (W) and all types of errors.
Predefined macros

None.

Examples

To compile myprogram.c so that compilation stops if a warning or higher level
message occurs, enter:

x1c myprogram.c -Werror

Category

Pragma equivalent
None.

Purpose

Instructs the compiler to compile or assemble the source files only but do not link.
With this option, the output is a .o file for each source file.

Syntax

»p»— -C >

Defaults

By default, the compiler invokes the linker to link object files into a final
executable.

Chapter 3. Compiler options reference 67

Usage

When this option is in effect, the compiler creates an output object file, file_name.o,
for each valid source file, such as file_name.c, file_name.i, file_name.C, file_name.cpp,
or file_name.s. You can use the -0 option to provide an explicit name for the object
file.

The -c option is overridden if the -E, -P, or -fsyntax-only (-gsyntaxonly) option
is specified.

Predefined macros
None.
Examples

To compile myprogram.c to produce an object file myprogram.o, but no executable
file, enter the command:

x1c myprogram.c -c

To compile myprogram.c to produce the object file new.o and no executable file,
enter:

x1c myprogram.c -C -0 new.o

Related information

* [“-E” on page 53|

* ["-0” on page 105|

* [“-P” on page 61|

+ ["-fsyntax-only (-gsyntaxonly) (C only)” on page 79|

-dM (-gshowmacros)

Category

[“Output control” on page 29|

Pragma equivalent

None

Purpose

Emits macro definitions to preprocessed output.

Emitting macros to preprocessed output can help determine functionality available
in the compiler. The macro listing may prove useful for debugging complex macro
expansions, as well.

Syntax

»>— -dM >

v
A

[noshowmacros—l
»— -q showmacros

68 XL C/C++: Compiler Reference for Little Endian Distributions

Defaults
-qnoshowmacros
Usage

Note the following when using this option:

* This option has no effect unless preprocessed output is generated; for example,
by using the -E or -P options.

* If a macro is defined and subsequently undefined before compilation ends, this
macro will not be included in the preprocessed output.

* Only macros defined internally by the preprocessor are considered predefined;
all other macros are considered as user-defined.

Related information
* |“-E” on page 53|

* ["-P” on page 61|

Category

Pragma equivalent
None.

Purpose

Specifies an entry point for a shared object when used together with the -shared
(-qmkshrobj) option.

Syntax

»»— -e——entry_name ><

Defaults
None.

Parameters

name
The name of the entry point for the shared executable.

Usage
Specify the -e option only with the -shared (-gmkshrobj) option.
Note: When you link object files, do not use the -e option. The default entry point

of the executable output is __start. Changing this label with the -e flag can
produce errors.

Chapter 3. Compiler options reference 69

Predefined macros
None.

Related information
* |“-shared (-qgmkshrobj)” on page 178|

-fasm (-gasm)
Category

[Language element control|

Pragma equivalent
None.
Purpose

Controls the interpretation and subsequent generation of code for assembler
language extensions.

When -gasm is in effect, the compiler generates code for assembly statements in the
source code. Suboptions specify the syntax used to interpret the content of the

assembly statement.

Note: The system assembler program must be available for this command to have
effect.

Syntax

|—asm—|
»»— -f no-asm ><

asm
{ [
»— —q noasm ><

Defaults

-qasm=gcc or -fasm

Parameters

gcc
Instructs the compiler to recognize the extended GCC syntax and semantics for
assembly statements.

Specifying -qasm without a suboption is equivalent to specifying the default.

Usage

At language levels stdc89 and stdc99, token asm is not a keyword. At all
the other language levels, token asm is treated as a keyword.

70 XL C/C++: Compiler Reference for Little Endian Distributions

The tokens asm, __asm, and __asm__ are keywords at all language levels.

For detailed information on the syntax and semantics of inline asm statements, see
['Inline assembly statements'|in the XL C/C++ Language Reference.

Examples

The following code snippet shows an example of the GCC conventions for asm
syntax in inline statements:
int a, b, c;
int main() {
asm("add %0, %1, %2" : "=r"(a) : "r"(b), "r"(c));
}

Related information

* [-gasm_as” on page 107]

+ [“-std (-glanglvl)” on page 182|

* [Inline assembly statements'|in the XL C/C++ Language Reference

-fcommon (-gcommon)

Category

[Object code controll

Pragma equivalent

None.

Purpose

Controls where uninitialized global variables are allocated.

When -fcommon (-qcommon) is in effect, uninitialized global variables are allocated
in the common section of the object file. When -fno-common (-gnocommon) is in

effect, uninitialized global variables are initialized to zero and allocated in the data
section of the object file.

Syntax

»»— -f common »><
I—no-common—l

»»— - common ><
l—nocommon—l

Defaults

. -fcommon (-qcommon) except when -shared (-qmkshrobj) is specified;
-fno-common (-qnocommon) when -shared (-qmkshrobj) is specified.

. [-fno-common (-gnocommon)

Chapter 3. Compiler options reference 71

Usage

This option does not affect static or automatic variables, or the declaration of
structure or union members.

This option is overridden by the common | nocommon and section variable attributes.
See ['The common and nocommon variable attribute'|and |'The section variable|
attribute’| in the XL C/C++ Language Reference.

Predefined macros
None.
Examples

In the following declaration, where a and b are global variables:

int a, b;

Compiling with -fcommon (-gcommon) produces the equivalent of the following
assembly code:

.comm _a,4
.comm _b,4

Compiling with -fno-common (-qnocommon) produces the equivalent of the
following assembly code:

.globl _a

.data

.zerofill _ DATA, _ common, _a, 4, 2
.globl _b

.data

.zerofill __DATA, _ common, _b, 4, 2

Related information

* |“-shared (-gmkshrobj)” on page 178|

* ['The common and nocommon variable attribute'|in the XL C/C++ Language
Reference

* ['The section variable attribute'|in the XL C/C++ Language Reference

-fdollars-in-identifiers (-qdollar)
Category

[Language element controll

Pragma equivalent

None

Purpose

Allows the dollar-sign ($) symbol to be used in the names of identifiers.

When -fdollars-in-identifiers or -qdol1ar is in effect, the dollar symbol $ in an
identifier is treated as a base character.

72 XL C/C++: Compiler Reference for Little Endian Distributions

Syntax

do11 ars-in-identifiers—|
»—-f—Eno-do11ars-1‘n-1’dent1’f1‘ers >

dollar
> -q—[nodo1 1:‘ >«

Defaults
-fdollars-in-identifiers or qdollar
Predefined macros

None.

Examples

To compile myprogram.c so that $ is allowed in identifiers in the program, enter:

x1c myprogram.c -fdollars-in-identifiers

Related information
* |“-std (-qlanglvl)” on page 182

-fdump-class-hierarchy (-qdump_class_hierarchy) (C++ only)
Category

[Listings, messages, and compiler information|

Pragma equivalent
None.
Purpose

Dumps a representation of the hierarchy and virtual function table layout of each
class object to a file.

Syntax

v
A

»»— -f—dump-class-hierarchy

»»— -g—dump_class_hierarchy ><

Defaults
Not applicable.
Usage

The output file name consists of the source file name appended with a .class suffix.

Chapter 3. Compiler options reference 73

Predefined macros
None.
Examples

To compile myprogram.C to produce a file named myprogram.C.class containing the
class hierarchy information, enter:

x1c++ myprogram.C -fdump-class-hierarchy

-finline-functions (-qinline)
Category

[Optimization and tuning]

Pragma equivalent
None.
Purpose

Attempts to inline functions instead of generating calls to those functions, for
improved performance.

Syntax

»»—-finline-functions >«

v
A

-gnoinline |
>>—|:-q1' nline
|—auto—|

Defaults

Enabled at -02.

Usage

This option attempt to inline all appropriate functions for inlining, including those
that are not declared inline. The compiler determines whether inlining a specific
function can improve performance. That is, whether a function is appropriate for
inlining is subject to two factors: limits on the number of inlined calls and the

amount of code size increase as a result. Therefore, enabling inlining a function
does not guarantee that function will be inlined.

Because inlining does not always improve runtime performance, you need to test
the effects of this option on your code. Do not attempt to inline recursive or
mutually recursive functions.

Predefined macros

None.

74 XL C/C++: Compiler Reference for Little Endian Distributions

To compile myprogram.c so that the functions that are appropriate for inlining are
inlined, use the following command:

x1c -finline-functions myprogram.c

-fPIC (-qpic)
Category

[Object code controll

Pragma equivalent

None.

Purpose

Generates position-independent code required for use in shared libraries.

Syntax

no-PIC
»»— -f |_.“IC —l

v
A

nopic
»»— -q |_p1c —l »><

Defaults
e , or -fno-PIC, or -qnopic

Usage
When -fPIC (-gpic) is in effect, the compiler generates position-independent code.

If a thread local storage (TLS) model is not specified, the position-independent
code setting determines the default TLS model:

* When -fno-PIC (-qnopic) is in effect, the default TLS model is 1ocal-exec.
* When -fPIC (-gpic) is in effect, the default TLS model is general-dynamic.

If the initial-exec TLS model is in effect, different code sequences are used
depending on different position-independent code settings.

You must compile all the compilation units that are not part of a shared library
with -fno-PIC (-qnopic) and that are part of a shared library with -fPIC (-qpic).

Predefined macros

None.

Examples

To compile a shared library Tibmylib.so, use the following commands:

xlc mylib.c -fPIC -c -o mylib.o
x1c -shared mylib -o Tibmylib.so.1

Chapter 3. Compiler options reference 75

Related information
+ [“-shared (-qgmkshrobj)” on page 178§|

-fpack-struct (-qalign)
Category

[Portability and migration|

Purpose

Specifies the alignment of data objects in storage, which avoids performance
problems with misaligned data.

Syntax

»»—-fpack-struct ><

11nuxppc
-q—ahgn—[bit packed

v
A

Defaults
-qalign=Tinuxppc

Parameters

bit_packed
Bit field data is packed on a bitwise basis without respect to byte boundaries.

Tinuxppc
Uses GNU C/C++ alignment rules to maintain binary compatibility with GNU
C/C++ objects.

Usage

If you use the -fpack-struct (-qalign=bit_packed) or -qalign=1inuxppc option
more than once on the command line, the last alignment rule specified applies to
the file.

Note: When using -fpack-struct (-qalign=bit_packed) or -qalign=Tinuxppc , all
system headers are also compiled with -fpack-struct (-qalign=bit_packed) or
-qalign=Tinuxppc . For a complete explanation of the option as well as usage
considerations, see in the XL C/C++ Optimization and Programming
Guide.

Predefined macros

None.

Related information

* [“Supported GCC pragmas” on page 194

* ['Aligning data'|in the XL C/C++ Optimization and Programming Guide
* ['The aligned variable attribute'|in the XL C/C++ Language Reference

* |'The packed variable attribute'[in the XL C/C++ Language Reference

76 XL C/C++: Compiler Reference for Little Endian Distributions

-fsigned-char, -funsigned-char (-qchars)
Category

[Floating-point and integer control|

Purpose

Determines whether all variables of type char are treated as either signed or
unsigned.

Syntax

unsigned
signed char: >
no-unsigned—|
no-signed—

»»— -f

CT 11

|—uns1'gned—|
»»— -g—chars—= signed >«

Defaults
-funsigned-char or -qchars=unsigned
Usage

Regardless of the setting of this option or pragma, the type of char is still
considered to be distinct from the types unsigned char and signed char for
purposes of type-compatibility checking or C++ overloading.

Predefined macros

* _CHAR_SIGNED and _ CHAR_SIGNED__ are defined to 1 when signed is in
effect; otherwise, it is undefined.

e CHAR_UNSIGNED and _ CHAR_UNSIGNED ___ are defined to 1 when
unsigned is in effect; otherwise, they are undefined.

-fstrict-aliasing (-qalias=ansi), -qalias
Category

[Optimization and tuning|

Pragma equivalent

None

Purpose

Indicates whether a program contains certain categories of aliasing or does not
conform to C/C++ standard aliasing rules. The compiler limits the scope of some

optimizations when there is a possibility that different names are aliases for the
same storage location.

Chapter 3. Compiler options reference 77

Syntax

restrict
ansi

noaddrtaken—
addrtaken
noansi
norestrict—

v

v
A

»— -g—alias—=

For details about the -fstrict-aliasing option, see the GCC information, available
at |http:/ /gcc.gnu.org/onlinedocs/|

Defaults
. 5@ -qalias=noaddrtaken:ansi:restrict
. -qalias=noaddrtaken:ansi:restrict for all invocation commands except

cc. -qalias=noaddrtaken:noansi:restrict for the cc invocation command.

Parameters

addrtaken | noaddrtaken
When addrtaken is in effect, the reference of any variable whose address is
taken may alias to any pointer type. Any class of variable for which an address
has not been recorded in the compilation unit is considered disjoint from
indirect access through pointers.

When noaddrtaken is specified, the compiler generates aliasing based on the
aliasing rules that are in effect.

ansi | noansi
This suboption has no effect unless you also specify an optimization option.
You can specify the may_alias attribute for a type that is not subject to
type-based aliasing rules.

When noansi is in effect, the optimizer makes worst case aliasing assumptions.
It assumes that a pointer of a given type can point to an external object or any
object whose address is already taken, regardless of type.

restrict | norestrict
When restrict is in effect, optimizations for pointers qualified with the
restrict keyword are enabled. Specifying norestrict disables optimizations for
restrict-qualified pointers.

-qalias=restrict is independent from other -qalias suboptions. Using the
-qalias=restrict option usually results in performance improvements for
code that uses restrict-qualified pointers. Note, however, that using
-qalias=restrict requires that restricted pointers be used correctly; if they are
not, compile-time and runtime failures may result.

Usage
-qalias makes assertions to the compiler about the code that is being compiled. If
the assertions about the code are false, the code that is generated by the compiler

might result in unpredictable behavior when the application is run.

The following are not subject to type-based aliasing:

78 XL C/C++: Compiler Reference for Little Endian Distributions

http://gcc.gnu.org/onlinedocs

+ Signed and unsigned types. For example, a pointer to a signed int can point to
an unsigned int.

* Character pointer types can point to any type.

* Types that are qualified as volatile or const. For example, a pointer to a const
int can point to an int.

. Base type pointers can point to the derived types of that type. g
Predefined macros

None.

Examples

To specify worst-case aliasing assumptions when you compile myprogram.c, enter:

x1c myprogram.c -0 -galias=noansi

Related information
* [“-gipa” on page 129
* |The may_alias type attribute (IBM extension)|in the XL C/C++ Language Reference

-fsyntax-only (-gsyntaxonly) (C only)
Category

[Error checking and debugging]

Pragma equivalent

None.

Purpose

Performs syntax checking without generating an object file.

Syntax

A\
A

»»— -f—syntax-only

A\
A

»»— -g—syntaxonly

Defaults
By default, source files are compiled and linked to generate an executable file.
Usage

The -P, -E, and -C options override the -fsyntax-only (-gsyntaxonly) option,
which in turn overrides the -c and -o options.

The -fsyntax-only (-gsyntaxonly) option suppresses only the generation of an

object file. All other files, such as listing files, are still produced if their
corresponding options are set.

Chapter 3. Compiler options reference 79

Predefined macros
None.
Examples

To check the syntax of myprogram.c without generating an object file, enter:
x1c myprogram.c -fsyntax-only

Related information
* |"-C, -C!” on page 51|

* [“-c” on page 67|

+ [-E” on page 53|

* [”-0” on page 105|

* [-P” on page 61|

-ftemplate-depth (-qtemplatedepth) (C++ only)
Category

[Template control|

Pragma equivalent
None.
Purpose

Specifies the maximum number of recursively instantiated template specializations
that will be processed by the compiler.

Syntax
»»— -f—-template-depth—=—number ><
»»— -g—templatedepth—=—number ><
Defaults

-ftemplate-depth=256 or -qtemplatedepth=256

Parameters

number
The maximum number of recursive template instantiations. The number can be
a value between 1 and INT_MAX. If your code attempts to recursively
instantiate more templates than number, compilation halts and an error
message is issued. If you specify an invalid value, the default value of 256 is
used.

Usage

Note that setting this option to a high value can potentially cause an
out-of-memory error due to the complexity and amount of code generated.

80 XL C/C++: Compiler Reference for Little Endian Distributions

Predefined macros
None.
Examples

To allow the following code in myprogram.cpp to be compiled successfully:

template <int n> void foo() {
foo<n-1>();

template <> void foo<@>() {}
int main() {

f00<400>()
}

Enter:
x1c++ myprogram.cpp -ftemplate-depth=400

Related information
* ['Using C++ templates'|in the XL C/C++ Optimization and Programming Guide.

-ftrapping-math (-qflttrap)
Category

[Error checking and debugging]

Purpose
Determines what types of floating-point exceptions to detect at run time.
The program receives a SIGFPE signal when the corresponding exception occurs.

Syntax

notrapping-math
»>— -f—[trappi ng-math —l

A\
A

|—nof1ttrap
flttrap ><

»— -

—ZEero
—zerodivide—
—und
—underf1ow—
L oy——— |
—overflow—
—inv
—invalid
—inex
—inexact
= enable
—en
nang

Chapter 3. Compiler options reference 81

Defaults
-fnotrapping-math or -gqnoflttrap

Specifying -qflttrap option with no suboptions is equivalent to
-qflttrap=overflow:underflow:zerodivide:invalid:inexact

Parameters

Note: You can specify the following suboptions with -qflttrap only.

enable, en
Inserts a trap when the specified exceptions (overflow, underflow, zerodivide,
invalid, or inexact) occur. You must specify this suboption if you want to turn
on exception trapping without modifying your source code. If any of the
specified exceptions occur, a SIGTRAP or SIGFPE signal is sent to the process
with the precise location of the exception.

inexact, inex
Enables the detection of floating-point inexact operations. If a floating-point
inexact operation occurs, an inexact operation exception status flag is set in the
Floating-Point Status and Control Register (FPSCR).

invalid, m
Enables the detection of floating-point invalid operations. If a floating-point
invalid operation occurs, an invalid operation exception status flag is set in the
FPSCR.

nanq
Generates code to detect Not a Number Quiet (NaNQ) and Not a Number
Signalling (NaNS) exceptions before and after each floating-point operation,
including assignment, and after each call to a function returning a
floating-point result to trap if the value is a NaN. Trapping code is generated
regardless of whether the enable suboption is specified.

overflow, ov
Enables the detection of floating-point overflow. If a floating-point overflow
occurs, an overflow exception status flag is set in the FPSCR.

underflow, und
Enables the detection of floating-point underflow. If a floating-point underflow
occurs, an underflow exception status flag is set in the FPSCR.

zerodivide, zero
Enables the detection of floating-point division by zero. If a floating-point
zero-divide occurs, a zero-divide exception status flag is set in the FPSCR.

Usage
Exceptions will be detected by the hardware, but trapping is not enabled.

It is recommended that you use the enable suboption whenever compiling the
main program with -ftrapping-math (-qflttrap). This ensures that the compiler
will generate the code to automatically enable floating-point exception trapping,
without requiring that you include calls to the appropriate floating-point exception
library functions in your code.

If you specify -qflttrap more than once, both with and without suboptions, the
-qflttrap without suboptions is ignored.

82 XL C/C++: Compiler Reference for Little Endian Distributions

The -ftrapping-math (-qflttrap) option is recognized during linking with IPA.
Specifying the option at the link step overrides the compile-time setting.

If your program contains signalling NaNs, you should use the -qfloat=nans option
along with -ftrapping-math (-qflttrap) to trap any exceptions.

The compiler exhibits behavior as illustrated in the following examples when the
-ftrapping-math (-qflttrap) option is specified together with an optimization
option:
* with -02:

— 1/0 generates a div0 exception and has a result of infinity

— 0/0 generates an invalid operation
* with -03 or greater:

— 1/0 generates a div0 exception and has a result of infinity

— 0/0 returns zero multiplied by the result of the previous division.

Note: Due to the transformations performed and the exception handling support
of some vector instructions, use of -qsimd=auto may change the location where an
exception is caught or even cause the compiler to miss catching an exception.

Predefined macros
None.

Example
#include <stdio.h>

int main()

{
float x, y, z;

x = 5.0;
y = 0.0;
z=x1/Yy;

printf("%f", z);
1

When you compile this program with the following command, the program stops
when the division is performed.

x1c -ftrapping-math divide_by zero.c

The zerodivide suboption identifies the type of exception to guard against. The
enable suboption causes a SIGFPE signal to be generated when the exception
occurs.

Related information
* |“-gfloat” on page 118

* |“-mcpu (-garch)” on page 101|

-ftis-model (-qgtls)
Category

[Object code controll

Chapter 3. Compiler options reference 83

Pragma equivalent
None.
Purpose

Enables recognition of the _thread storage class specifier, which designates
variables that are to be allocated thread-local storage; and specifies the threadlocal
storage model to be used.

When this option is in effect, any variables marked with the __ thread storage class
specifier are treated as local to each thread in a multithreaded application. At run
time, a copy of the variable is created for each thread that accesses it, and
destroyed when the thread terminates. Like other high-level constructs that you
can use to parallelize your applications, thread-local storage prevents race
conditions to global data, without the need for low-level synchronization of
threads.

Suboptions allow you to specify thread-local storage models, which provide better
performance but are more restrictive in their applicability.

Syntax
t1s-model =global-dynamic
=]ocal-dynamic
=initial-exec
=]ocal-exec
»»— -f no-t1s-model ><
=default
tls =global-dynamic—
=initial-exec—
=local-exec
=local-dynamic—
»»— - notls >
Defaults

-qtls=default
Specifying -qt1s with no suboption is equivalent to specifying -qt1s=default.
The default setting for -ft1s-model is the same as the default setting for -qt1s.

Parameters

default (-qtls only)
Uses the appropriate model depending on the setting of the -fPIC (-qpic)
option, which determines whether position-independent code is generated or
not. When -fPIC (-qpic) is in effect, this suboption results in
-qt1s=global-dynamic. When -fno-pic (-fno-PIC, -gnopic) is in effect, this
suboption results in -qt1s=initial-exec .

global-dynamic
This model is the most general, and can be used for all thread-local variables.

84 XL C/C++: Compiler Reference for Little Endian Distributions

initial-exec
This model provides better performance than the global-dynamic or
local-dynamic models, and can be used for thread-local variables defined in
dynamically-loaded modules, provided that those modules are loaded at the
same time as the executable. That is, it can only be used when all thread-local
variables are defined in modules that are not loaded through dlopen.

local-dynamic
This model provides better performance than the global-dynamic model, and
can be used for thread-local variables defined in dynamically-loaded modules.
However, it can only be used when all references to thread-local variables are
contained in the same module in which the variables are defined.

local-exec
This model provides the best performance of all of the models, but can only be
used when all thread-local variables are defined and referenced by the main
executable.

Predefined macros
None.
Related information

* [“-fPIC (-gpic)” on page 75|
* ['The __thread storage class specifier'|in the XL C/C++ Language Reference

-ftime-report (-qphsinfo)
Category

[Listings, messages, and compiler information|

Pragma equivalent
None.
Purpose

Reports the time taken in each compilation phase to standard output.

Syntax

»»—-ftime-report ><
nophsinfo

»»— —q |_phsinfo —l ><

Defaults

Not on by default.

-qnophsinfo

Chapter 3. Compiler options reference 85

Usage

The output takes the form numberl/number2 for each phase where numberl
represents the CPU time used by the compiler and number2 represents the real time
(wall clock time).

The time reported by -gphsinfo is in seconds.

Predefined macros

None.

Examples

To compile myprogram.c and report the time taken for each phase of the
compilation, enter:

x1c myprogram.c -gphsinfo

The output will look similar to:

C Init - Phase Ends; 0.010/ 0.040
IL Gen - Phase Ends; 0.040/ 0.070
W-TRANS - Phase Ends; 0.000/ 0.010
OPTIMIZ - Phase Ends; 0.000/ 0.000
REGALLO - Phase Ends; 0.000/ 0.000
AS - Phase Ends; 0.000/ 0.000

Compiling the same program with -04 gives:

C Init - Phase Ends; 0.010/ 0.040
IL Gen - Phase Ends; 0.060/ 0.070
IPA - Phase Ends; 0.060/ 0.070
IPA - Phase Ends; 0.070/ 0.110
W-TRANS - Phase Ends; 0.060/ 0.180
OPTIMIZ - Phase Ends; 0.010/ 0.010
REGALLO - Phase Ends; 0.010/ 0.020
AS - Phase Ends; 0.000/ 0.000

C++ To compile myprogram.C and report the time taken for each phase of the
compilation, enter:

x1c++ myprogram.C -gphsinfo

The output will look similar to:

Front End - Phase Ends; 0.004/ 0.005
W-TRANS - Phase Ends; 0.010/ 0.010
OPTIMIZ - Phase Ends; 0.000/ 0.000
REGALLO - Phase Ends; 0.000/ 0.000
AS - Phase Ends; 0.000/ 0.000

Compiling the same program with -04 gives:

Front End - Phase Ends; 0.004/ 0.006
IPA - Phase Ends; 0.040/ 0.040
IPA - Phase Ends; 0.220/ 0.280
W-TRANS - Phase Ends; 0.030/ 0.110
OPTIMIZ - Phase Ends; 0.030/ 0.030
REGALLO - Phase Ends; 0.010/ 0.050
AS - Phase Ends; 0.000/ 0.000

86 XL C/C++: Compiler Reference for Little Endian Distributions

-funroll-loops (-qunroll), -funroll-all-loops (-qunroll=yes)
Category

[Optimization and tuning|

Pragma equivalent
#pragma unroll
Purpose

Controls loop unrolling, for improved performance.

-funrol1-loops
Instructs the compiler to perform basic loop unrolling.

-funroll1-all-Tloops
Instructs the compiler to search for more opportunities for loop unrolling than
that performed with -funrol1-loops. In general, -funrol1-all-Toops has more
chances to increase compile time or program size than -funrol1-Toops
processing, but it might also improve your application's performance.

When -funrol1-loops or -funrol1-all-loops is in effect, the optimizer determines
and applies the best unrolling factor for each loop; in some cases, the loop control
might be modified to avoid unnecessary branching. The compiler remains the final
arbiter of whether the loop is unrolled.

Syntax

Option syntax

-funroll-1 oops—|
-funroll-all-Toops

v
A

Option syntax

|—auto—
unroll—= yes
i:no—
n
»— -q nounroll

Defaults

v
A

-funrol1-loops or -qunroll=auto
Parameters

The following suboptions are for -qunroll only.

auto
This suboption is equivalent to -funrol1-Toops.

yes
This suboption is equivalent to -funrol1-al1-1oops.

no Instructs the compiler to not unroll loops.

Chapter 3. Compiler options reference 87

n Instructs the compiler to unroll loops by a factor of n. In other words, the body
of a loop is replicated to create n copies and the number of iterations is
reduced by a factor of 1/n. The -qunrel1=n option specifies a global unroll
factor that affects all loops that do not have an unroll pragma yet. The value of
n must be a positive integer.

Specifying #pragma unroll(1) or -qunrol1=1 disables loop unrolling, and is
equivalent to specifying #pragma nounroll or -gnounroll. If n is not specified
and if -ghot, -04, or -05 is specified, the optimizer determines an appropriate
unrolling factor for each nested loop.

The compiler might limit unrolling to a number smaller than the value you
specify for n. This is because the option form affects all loops in source files to
which it applies and large unrolling factors might significantly increase
compile time without necessarily improving runtime performance. To specify
an unrolling factor for particular loops, use the #pragma form in those loops.

Specifying -qunrol1l without any suboptions is equivalent to -qunroll=yes.
Usage

The pragma overrides the option setting for a designated loop. However, even if
#pragma unroll is specified for a given loop, the compiler remains the final arbiter
of whether the loop is unrolled.

Only one pragma can be specified on a loop.

The pragma affects only the loop that follows it. An inner nested loop requires a
#pragma unroll directive to precede it if the wanted loop unrolling strategy is
different from that of the prevailing option.

Predefined macros

None.
Related information:

[“#pragma unroll, #pragma nounroll” on page 206|

-fvisibility (-qvisibility)
Category

[Optimization and tuning|

Pragma equivalent
» -fvisibility: #pragma GCC visibility push (default | protected | hidden)
* -quisibility: #pragma GCC visibility push (default | protected | hidden)

#pragma GCC visibility pop

Purpose

Specifies the visibility attribute for external linkage entities in object files. The
external linkage entities have the visibility attribute that is specified by the

-fvisibility option if they do not get visibility attributes from pragma directives,
explicitly specified attributes, or propagation rules.

88 XL C/C++: Compiler Reference for Little Endian Distributions

Syntax

defau]t—|

»»— -f—visibility—= |_hidden _| >
protected
default

»»— -g—visibility—= hidden »<
|—protected—|

Defaults

-fvisibility=default or -qvisibility=default

Parameters

default
Indicates that the affected external linkage entities have the default visibility
attribute. These entities are exported in shared libraries, and they can be
preempted.

protected
Indicates that the affected external linkage entities have the protected visibility
attribute. These entities are exported in shared libraries, but they cannot be
preempted.

hidden
Indicates that the affected external linkage entities have the hidden visibility
attribute. These entities are not exported in shared libraries, but their addresses
can be referenced indirectly through pointers.

The -qvisibility=internal option is not supported; use the
-qvisibility=hidden option instead.

Usage

The -fvisibility option globally sets visibility attributes for external linkage
entities to describe whether and how an entity defined in one module can be
referenced or used in other modules. Entity visibility attributes affect entities with
external linkage only, and cannot increase the visibility of other entities. Entity
preemption occurs when an entity definition is resolved at link time, but is
replaced with another entity definition at run time.

Predefined macros
None.
Examples

To set external linkage entities with the protected visibility attribute in compilation
unit myprogram.c, compile myprogram.c with the -fvisibility=protected option.

x1c myprogram.c -fvisibility=protected -c
All the external linkage entities in the myprogram.c file have the protected visibility
attribute if they do not get visibility attributes from pragma directives, explicitly

specified attributes, or propagation rules.

Chapter 3. Compiler options reference 89

Related information
* |“-shared (-qgmkshrobj)” on page 178§|

* [“Supported GCC pragmas” on page 194

* |'Using visibility attributes (IBM extension)'|in the XL C/C++ Optimization and
Programming Guide

* |'The visibility variable attribute (IBM extension)"} ['The visibility function|

attribute (IBM extension)'} ['The visibility type attribute (C++ only) (IBM|

extension)'| and ['The visibility namespace attribute (C++ only) (IBM extension)'

in the XL C/C++ Language Reference

Category

[Error checking and debugging]

Pragma equivalent
None.
Purpose

Generates debugging information for use by a symbolic debugger, and makes the
program state available to the debugging session at selected source locations.

Program state refers to the values of user variables at certain points during the
execution of a program.

You can use different -g levels to balance between debug capability and compiler
optimization. Higher -g levels provide a more complete debug support, at the cost
of runtime or possible compile-time performance, while lower -g levels provide
higher runtime performance, at the cost of some capability in the debugging
session.

When the -02 optimization level is in effect, the debug capability is completely
supported.

Note: When an optimization level higher than -02 is in effect, the debug capability
is limited.

Syntax

»r— -g]

O 0

90 XL C/C++: Compiler Reference for Little Endian Distributions

Defaults
-go
Parameters
-8
* When no optimization is enabled (-qnoopt), -g is equivalent to -g9.

* When the -02 optimization level is in effect, -g is equivalent to -g2.
-go Generates no debugging information. No program state is preserved.

-g1 Generates minimal read-only debugging information about line numbers
and source file names. No program state is preserved. This option is
equivalent to -qlinedebug.

-g2 Generates read-only debugging information about line numbers, source file
names, and variables.

When the -02 optimization level is in effect, no program state is preserved.

-93, -g4
Generates read-only debugging information about line numbers, source file
names, and variables.

When the -02 optimization level is in effect:
* No program state is preserved.
* Function parameter values are available to the debugger at the

beginning of each function.

-95, -g6, -g7
Generates read-only debugging information about line numbers, source file
names, and variables.

When the -02 optimization level is in effect:

* Program state is available to the debugger at if constructs, loop
constructs, function definitions, and function calls. For details, see
[“Usage” on page 92

* Function parameter values are available to the debugger at the
beginning of each function.

-g8 Generates read-only debugging information about line numbers, source file
names, and variables.
When the -02 optimization level is in effect:

* Program state is available to the debugger at the beginning of every
executable statement.

* Function parameter values are available to the debugger at the
beginning of each function.

-g9 Generates debugging information about line numbers, source file names,
and variables. You can modify the value of the variables in the debugger.
When the -02 optimization level is in effect:

* Program state is available to the debugger at the beginning of every
executable statement.

* Function parameter values are available to the debugger at the
beginning of each function.

Chapter 3. Compiler options reference 91

Usage

When no optimization is enabled, the debugging information is always available if
you specify -g2 or a higher level. When the -02 optimization level is in effect, the
debugging information is available at selected source locations if you specify -g5
or a higher level.

When you specify -g8 or -g9 with -02, the debugging information is available at
every source line with an executable statement.

When you specify -g5, -g6, or -g7 with -02, the debugging information is available
for the following language constructs:

e if constructs

The debugging information is available at the beginning of every if statement,
namely at the line where the if keyword is specified. It is also available at the
beginning of the next executable statement right after the if construct.

* Loop constructs

The debugging information is available at the beginning of every do, for, or
while statement, namely at the line where the do, for, or while keyword is
specified. It is also available at the beginning of the next executable statement
right after the do, for, or while construct.

* Function definitions

The debugging information is available at the first executable statement in the
body of the function.

¢ Function calls

The debugging information is available at the beginning of every statement
where a user-defined function is called. It is also available at the beginning of
the next executable statement right after the statement that contains the function
call.

Examples

Use the following command to compile myprogram.c and generate an executable
program called testing for debugging:

x1c myprogram.c -o testing -g

The following command uses a specific -g level with -02 to compile myprogram.c
and generate debugging information:

x1c myprogram.c -02 -g8

Related information

+ ["-qlinedebug” on page 138

s [“-gfullpath” on page 121

* |“-O, -qoptimize” on page 58|

* |“-gkeepparm” on page 135|

-include (-ginclude)
Category

nput contro

92 XL C/C++: Compiler Reference for Little Endian Distributions

Pragma equivalent
None.
Purpose

Specifies additional header files to be included in a compilation unit, as though the
files were named in an #include statement in the source file.

The headers are inserted before all code statements and any headers specified by
an #include preprocessor directive in the source file. This option is provided for
portability among supported platforms.

Syntax

»»—-include—file >«

v
A

noinc]ude—|
>>—-q—|: =—file

include

Defaults
None.

Parameters
file

The header file to be included in the compilation units being compiled.
Usage

Firstly, file is searched in the preprocessor's working directory. If file is not found in
the preprocessor's working directory, it is searched for in the search chain of the
#include directive. If multiple -include (-qinclude) options are specified, the files
are included in order of appearance on the command line.

Predefined macros
None.
Examples

To include the files testl.h and test2.h in the source file test.c, enter the
following command:

xlc -include testl.h -include test2.h test.c

Related information
s |[“Directory search sequence for include files” on page 8|

-isystem (-qc_stdinc) (C only)
Category

[Compiler customization|

Chapter 3. Compiler options reference 93

Pragma equivalent

None.

Purpose

Changes the standard search location for the XL C header files.

Syntax

v
A

»»—-isystem—dir

- —q—c_stdinc—=—|_——|—'directory_path] <

Defaults

By default, the compiler searches the directory specified in the configuration file
for the XL C header files (this is normally /opt/ibm/x1C/13.1.1/include/).

Parameters
dir
The directory for the compiler to search for XL C header files. The search

directories are after all directories specified by the -1 option but before the
standard system directories. The dir can be a relative or absolute path.

directory path
The path for the directory where the compiler should search for the XL C
header files. The directory_path can be a relative or absolute path. You can
surround the path with quotation marks to ensure it is not split up by the
command line.

Usage

This option allows you to change the search paths for specific compilations. To
permanently change the default search paths for the XL C headers, you use a
configuration file to do so; see [“Directory search sequence for include files” on|
for more information.

If this option is specified more than once, only the last instance of the option is
used by the compiler.

This option is ignored if the -nostdinc or -nostdinc++ (-gnestdinc) option is in
effect.

Predefined macros

None.

94 XL C/C++: Compiler Reference for Little Endian Distributions

Examples

To override the default search path for the XL C headers with mypath/headersl
and mypath/headers2, enter:

xTc myprogram.c -isystem mypath/headersl -isystem mypath/headers2

Related information

+ [“-isystem (-qgcc_c_stdinc) (C only)” on page 96|

+ ["-gstdinc, -gnostdinc (-nostdinc, -nostdinc++)” on page 169

+ [“-include (-qginclude)” on page 92|

+ |“Directory search sequence for include files” on page 8|

* |“Specifying compiler options in a configuration file” on page 5|

* [’-I” on page 56|

-isystem (-qcpp_stdinc) (C++ only)
Category

[Compiler customization|

Pragma equivalent

None.

Purpose

Changes the standard search location for the XL C++ header files.
Syntax

»»—-isystem—dir »<

> —q—cpp_stdinc—=—|_—_|—'director‘y_path] <

Defaults

By default, the compiler searches the directory specified in the configuration file
for the XL C++ header files (this is normally /opt/ibm/xI1C/13.1.1/include/).

Parameters
dir
The directory for the compiler to search for XL C++ header files. The search

directories are after all directories specified by the -1 option but before the
standard system directories. The dir can be a relative or absolute path.

directory path
The path for the directory where the compiler should search for the XL C++
header files. The directory_path can be a relative or absolute path. You can
surround the path with quotation marks to ensure it is not split up by the
command line.

Chapter 3. Compiler options reference 95

Usage

This option allows you to change the search paths for specific compilations. To
permanently change the default search paths for the XL C++ headers, you use a
configuration file to do so; see [“Directory search sequence for include files” on|
for more information.

If this option is specified more than once, only the last instance of the option is
used by the compiler.

This option is ignored if the -nostdinc or -nostdinc++ (-gnestdinc) option is in
effect.

Predefined macros
None.
Examples

To override the default search path for the XL C++ headers with mypath/headersl
and mypath/headers2, enter:

xTc myprogram.C -isystem mypath/headersl -isystem mypath/headers2

Related information

* [“-isystem (-qgcc_cpp_stdinc) (C++ only)” on page 97|

+ |“-gstdinc, -qnostdinc (-nostdinc, -nostdinc++)” on page 169|

s [“-include (-ginclude)” on page 92|

+ |“Directory search sequence for include files” on page 8|

* |“Specifying compiler options in a configuration file” on page 5|

* [’-I” on page 56|

-isystem (-qgcc_c_stdinc) (C only)

Category

[Compiler customization|

Pragma equivalent

None.

Purpose

Changes the standard search location for the GNU C system header files.

Syntax

»»>—-isystem—dir

E -q—gcc_c_stdinc—=—|_—_|—'directory_path]

96 XL C/C++: Compiler Reference for Little Endian Distributions

Defaults
By default, the compiler searches the directory specified in the configuration file.

Parameters
dir
The directory for the compiler to search for GNU C header files. The search

directories are after all directories specified by the -I option but before the
standard system directories. The dir can be a relative or absolute path.

directory path
The path for the directory where the compiler should search for the GNU C
header files. The directory_path can be a relative or absolute path. You can
surround the path with quotation marks to ensure it is not split up by the
command line.

Usage
This option allows you to change the search paths for specific compilations. To

permanently change the default search paths for the GNU C headers, you use a
conﬁiuration file to do so; see [“Directory search sequence for include files” on|
page 8

for more information.

If this option is specified more than once, only the last instance of the option is
used by the compiler.

This option is ignored if the -nostdinc or -nostdinc++ (-gqnostdinc) option is in
effect.

Predefined macros
None.
Examples

To override the default search paths for the GNU C headers with mypath/headersl
and mypath/headers2, enter:

x1c myprogram.c -isystem mypath/headersl -isystem mypath/headers2

Related information

+ [“-isystem (-qc_stdinc) (C only)” on page 93|

* [“-gstdinc, -gnostdinc (-nostdinc, -nostdinc++)” on page 169

+ [“-include (-ginclude)” on page 92|

+ [“Directory search sequence for include files” on page 8|

* |“Specifying compiler options in a configuration file” on page 5|

* ["-I” on page 56|

-isystem (-qgcc_cpp_stdinc) (C++ only)
Category

[Compiler customization|

Pragma equivalent

None

Chapter 3. Compiler options reference 97

Purpose
Changes the standard search location for the GNU C++ system header files.

Syntax

»»—-isystem—dir >«

Y
A

> -q—gcc_cpp_stdinc—=—|_—_|—'directory_path]

Defaults
By default, the compiler searches the directory specified in the configuration file.

Parameters
dir
The directory for the compiler to search for GNU C++ header files. The search

directories are after all directories specified by the -I option but before the
standard system directories. The dir can be a relative or absolute path.

directory path
The path for the directory where the compiler should search for the GNU C++
header files. The directory_path can be a relative or absolute path. You can
surround the path with quotation marks to ensure it is not split up by the
command line.

Usage

This option allows you to change the search paths for specific compilations. To
permanently change the default search paths for the GNU C++ headers, you use a
configuration file to do so; see [“Directory search sequence for include files” on|

for more information.

If this option is specified more than once, only the last instance of the option is
used by the compiler.

This option is ignored if the -nostdinc or -nostdinc++ (-gnostdinc) option is in
effect.

Predefined macros
None.
Examples

To override the default search paths for the GNU C++ headers with
mypath/headersl and mypath/headers2, enter:

x1c myprogram.C -isystem mypath/headersl -isystem mypath/headers2

98 XL C/C++: Compiler Reference for Little Endian Distributions

Related information

* [“-isystem (-qcpp_stdinc) (C++ only)” on page 95|

« [“-gstdinc, -qnostdinc (-nostdinc, -nostdinc++)” on page 169

+ [“-include (-ginclude)” on page 92|

+ [“Directory search sequence for include files” on page 8|

* |“Specifying compiler options in a configuration file” on page 5|

* ["-1” on page 56|

Category

Pragma equivalent
None.

Purpose

Searches for the specified library file. The linker searches for libkey.so, and then
libkey.a if libkey.so is not found.

Syntax

»»— -1—key ><

Defaults

The compiler default is to search only some of the compiler runtime libraries. The
default configuration file specifies the default library names to search for with the
-1 compiler option, and the default search path for libraries with the -L compiler
option.

The C and C++ runtime libraries are automatically added.

Parameters
key
The name of the library minus the Tib and .a or .so characters.

Usage

You must also provide additional search path information for libraries not located
in the default search path. The search path can be modified with the -L option.

The -1 option is cumulative. Subsequent appearances of the -1 option on the
command line do not replace, but add to, the list of libraries specified by earlier
occurrences of -1. Libraries are searched in the order in which they appear on the
command line, so the order in which you specify libraries can affect symbol
resolution in your application.

For more information, refer to the Id documentation for your operating system.

Chapter 3. Compiler options reference 99

Predefined macros
None.
Examples

To compile myprogram.c and link it with library 1ibmylibrary.so or
Tibmylibrary.a that is found in the /usr/mylibdir directory, enter the following
command. Preference is given to Tibmylibrary.so over 1ibmylibrary.a.

x1c myprogram.c -Imylibrary -L/usr/mylibdir

Related information
+ [“-L” on page 57]
+ |“Specifying compiler options in a configuration file” on page 5|

-maltivec (-qaltivec)

Category

[Language element control|

Pragma equivalent

None.

Purpose

Enables the compiler support for vector data types and operators.
Syntax

no—a]tivec—l
> - altivec

noaltivec———
=le
»— g altivec |_-bc—l ><

Defaults

By default, -mno-altivec or -gnoaltivec is effective. Specifying -maltivec is
equivalent to specifying -qaltivec=1le.
Parameters

be Specifies big endian element order. Vectors are laid out in vector registers
from left to right, so that element 0 is the leftmost element in the register.

le Specifies little endian element order. Vectors are laid out in vector registers
from right to left, so that element 0 is the rightmost element in the register.

100 XL C/C++: Compiler Reference for Little Endian Distributions

Usage

The -maltivec or -qaltivec option has effect only when you set or imply -mcpu to
be an architecture that supports vector instructions. Otherwise, the compiler
ignores -maltivec or -qaltivec and issues a warning message.

The -maltivec or -qaltivec option affects the following categories of functions:
* Vector Multimedia Extension (VMX) load and store built-in functions
* Vector Scalar Extension (VSX) load and store built-in functions
* The nonload and nonstore built-in functions referring to the vector element
order
The following list shows all the functions affected:
* Load functions
— VMX load functions: vec_ld
— VSX load functions: vec_x1d2, vec_xlw4, and vec_xl
» Store functions
— VMX store functions: vec_st
— VSX store functions: vec_xstd2, vec_xstw4, and vec_xst

* Nonload and nonstore functions: __vpermxor, vec_extract, vec_insert,
vec_mergeh, vec_mergel, vec_pack, vec_perm, vec_promote, vec_splat,
vec_unpackh, and vec_unpackl

Predefined macros

__ALTIVEC__ is defined to 1 and _ VEC__ is defined to 10206 when -maltivec or
-qaltivec is in effect; otherwise, they are undefined.

__ VEC_ELEMENT_REG_ORDER__ is defined to _ ORDER_LITTLE_ENDIAN__
when -qaltivec=le (-maltivec) is in effect, or to _ ORDER_BIG_ENDIAN__ when
-qaltivec=be is in effect.

Examples

* To enable compiler support for vector programming, enter the following
command:

x1c myprogram.c -mcpu=pwr8 -maltivec

* To change the vector element sequence to big endian element order in registers,
enter the following command:

x1c myprogram.c -qaltivec=be

Related information
* [“-mcpu (-qarch)’]
+ [“Vector built-in functions” on page 257
s [Vector types (IBM extension)
* |“-gsimd” on page 165|
o AltiVec Technology Programming Interface Manual, available at
Ihttp: / /www.freescale.com/files/32bit/doc/ref_manual/ ALTIVECPIM.pdﬂ

-mcpu (-qarch)
Category

[Optimization and tuning|

Chapter 3. Compiler options reference 101

http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf

Pragma equivalent
None.
Purpose

Specifies the processor architecture for which the code (instructions) should be
generated.

Syntax

=power8
’:=pwr8——|
»»— -m—cCpu >

=—pwr8
»»— -g—arch |_— autc—|

v
A

Defaults
* -mcpu=pwr8, -mcpu=power8, or -qarch=pwr8
* -garch=auto when -04 or -05 is in effect

Parameters

auto
Automatically detects the specific architecture of the compiling machine. It
assumes that the execution environment will be the same as the compilation
environment. This option is implied if the -04 or -05 option is set or implied.
You can specify the auto suboption with -qarch only.

pwrs8
Produces object code containing instructions that run on the POWERS®
hardware platforms.

powers
Produces object code containing instructions that run on the POWERS
hardware platforms. You can specify this suboption with -march only.

Usage

For any given -mcpu or -qarch setting, the compiler defaults to a specific, matching
-mtune or -qtune setting, which can provide additional performance improvements.
For detailed information about using -mcpu (-gqarch) and -mtune (-qtune)
together, see [-mtune (-qtune)” on page 103

The POWERS architecture supports graphics, square root, Vector Multimedia
Extension (VMX) processing, Vector Scalar Extension (VSX) processing, hardware
transactional memory, and cryptography.

Predefined macros

See [“Macros related to architecture settings” on page 216| for a list of macros that
are predefined by -mcpu (-qarch) suboptions.

102 XL C/C++: Compiler Reference for Little Endian Distributions

Examples

To specify that the executable program testing compiled from myprogram.c is to
run on a computer with VSX instruction support, enter:

x1c -0 testing myprogram.c -mcpu=pwr8

Related information

* Lqprefetch
* [qfload

+ [“-mtune (-qtune)”]

* [“Macros related to architecture settings” on page 216

+ |'Optimizing your applications'|in the XL C/C++ Optimization and Programming
Guide

-mtune (-qtune)
Category

[Optimization and tuning|

Pragma equivalent

None.

Purpose

Tunes instruction selection, scheduling, and other architecture-dependent

performance enhancements to run best on a specific hardware architecture. Allows
specification of a target SMT mode to direct optimizations for best performance in

that mode.
Syntax
power8—
’:pwrS—
»>— -m—tune—= ><
|—ba1anced—
»»— -g—tune—= pwr8 »<
Lauto L st J
: balanced—
smt2
smt4
smt8
Defaults

-mtune=pwr8, -mtune=power8, or -qtune=pwr8:st
Parameters for CPU suboptions

The following CPU suboptions allow you to specify a particular architecture for
the compiler to target for best performance:

Chapter 3. Compiler options reference 103

auto
Optimizations are tuned for the platform on which the application is compiled.
You can specify the auto suboption with -qtune only.

balanced
Optimizations are tuned across a selected range of recent hardware. You can
specify the balanced suboption with -qtune only.

pwrs
Optimizations are tuned for the POWERS hardware platforms.

powers
Optimizations are tuned for the POWERS hardware platforms. You can specify
this suboption with -mtune only.

Parameters for SMT suboptions

The following simultaneous multithreading (SMT) suboptions allow you to
optionally specify an execution mode for the compiler to target for best
performance. You can specify these SMT suboptions with -qtune only.

balanced
Optimizations are tuned for performance across various SMT modes for a
selected range of recent hardware.

st Optimizations are tuned for single-threaded execution.

smt2
Optimizations are tuned for SMT2 execution mode (two threads).

smt4
Optimizations are tuned for SMT4 execution mode (four threads).

smt8
Optimizations are tuned for SMT8 execution mode (eight threads).

Usage

By arranging (scheduling) the generated machine instructions to take maximum
advantage of hardware features such as cache size and pipelining, -mtune or
-qtune can improve performance. It only has an effect when used in combination
with options that enable optimization.

Although changing the -mtune or -qtune setting may affect the performance of the
resulting executable, it has no effect on whether the executable can be executed
correctly on a particular hardware platform.

Predefined macros
None.
Examples

To specify that the executable program testing compiled from myprogram.c is to be
optimized for a POWERS hardware platform, enter:

x1c -0 testing myprogram.c -mtune=pwr8

To specify that the executable program testing compiled from myprogram.c is to be
optimized for a POWERS8 hardware platform configured for the SMT4 mode, enter:

x1c -0 testing myprogram.c -qtune=pwr8:smtd

104 XL C/C++: Compiler Reference for Little Endian Distributions

Related information
* |“-mcpu (-garch)” on page 101|

+ |'Optimizing your applications'|in the XL C/C++ Optimization and Programming
Guide

Category

Pragma equivalent

None.

Purpose

Specifies a name for the output object, assembler, executable, or preprocessed file.

Syntax

A\
A

»»— -0—path

Defaults

See |[“Types of output files” on page 4| for the default file names and suffixes
produced by different phases of compilation.

Parameters

path
When you are using the option to compile from source files, path can be the
name of a file or directory. The path can be a relative or absolute path name.
When you are using the option to link from object files, path must be a file
name.

If the path is the name of an existing directory, files created by the compiler are
placed into that directory. If path is not an existing directory, the path is the
name of the file produced by the compiler. See below for examples.

You cannot specify a file name with a C or C++ source file suffix (.C, .c, or
.cpp), such as myprog.c; this results in an error and neither the compiler nor
the linker is invoked.
Usage
If you use the -c option with -0 together and the path is not an existing directory,
you can only compile one source file at a time. In this case, if more than one
source file name is listed in the compiler invocation, the compiler issues a warning
message and ignores -o.
The -P, and -fsyntax-only (-gsyntaxonly) options override the -0 option.

Predefined macros

None.

Chapter 3. Compiler options reference 105

Examples

To compile myprogram.c so that the resulting executable is called myaccount,
assuming that no directory with name myaccount exists, enter:

x1c myprogram.c -0 myaccount

To compile test.c to an object file only and name the object file new.o, enter:

xlc test.c -c -0 new.o

Related information
* [“-c” on page 67
* ["-E” on page 53
* ["-P” on page 61
+ ["-fsyntax-only (-gsyntaxonly) (C only)” on page 79|

-p, -pg, -qprofile
Category

[Optimization and tuning|

Pragma equivalent
None.
Purpose
Prepares the object files produced by the compiler for profiling.
When you compile with a profiling option, the compiler produces monitoring code
that counts the number of times each routine is called. The compiler replaces the
startup routine of each subprogram with one that calls the monitor subroutine at
the start. When you execute the compiled program and it ends normally, it writes
the recorded information to a gmon.out file. You can then use the gprof command
to generate a runtime profile.
Syntax
-p >«
-P9

-g—profil e—:—Ep
Pg

Defaults
Not applicable.
Usage

When you are compiling and linking in separate steps, you must specify the
profiling option in both steps.

Predefined macros

None.

106 XL C/C++: Compiler Reference for Little Endian Distributions

Examples

To compile myprogram.c to include profiling data, enter:

x1c myprogram.c -p

Remember to compile and link with one of the profiling options. For example:

x1c myprogram.c -p -c
x1c myprogram.o -p -0 program

Related information

* See your operating system documentation for more information on the gprof
command.

* The -p and -pg options that GCC provides. For details, see the GCC online
documentation at |http:/ /gcc.gnu.org/onlinedocs /|

-qaggrcopy
Category

[Optimization and tuning]|

Pragma equivalent

None.

Purpose

Enables destructive copy operations for structures and unions.

Syntax

|—noover1 ap—l

overlap

v
A

»>— -q—aggrcopy—=

Defaults
-qaggrcopy=nooverlap

Parameters

overlap | nooverlap
nooverlap assumes that the source and destination for structure and union
assignments do not overlap, allowing the compiler to generate faster code.
overlap inhibits these optimizations.

Predefined macros

None.

-gasm_as
Category

[Compiler customization|

Chapter 3. Compiler options reference 107

http://gcc.gnu.org/onlinedocs/

Pragma equivalent
None.
Purpose

Specifies the path and flags used to invoke the assembler in order to handle
assembler code in an asm assembly statement.

Normally the compiler reads the location of the assembler from the configuration
file; you can use this option to specify an alternate assembler program and flags to
pass to that assembler.

Syntax
»— —q asm_as—= path >«
Il_path II_|
|:f l ags:|
Defaults

By default, the compiler invokes the assembler program defined for the as
command in the compiler configuration file.
Parameters

path
The full path name of the assembler to be used.

flags
A space-separated list of options to be passed to the assembler for assembly
statements. Quotation marks must be used if spaces are present.

Predefined macros
None.
Examples

To instruct the compiler to use the assembler program at /bin/as when it
encounters inline assembler code in myprogram.c, enter:

x1c myprogram.c -gasm_as=/bin/as

To instruct the compiler to pass some additional options to the assembler at
/bin/as for processing inline assembler code in myprogram.c, enter:

x1c myprogram.c -gasm_as="/bin/as -a64 -1 a.lst"

Related information

* [“-fasm (-qasm)” on page 70|

-qcache
Category

[Optimization and tuning]|

108 XL C/C++: Compiler Reference for Little Endian Distributions

Pragma equivalent

None.

Purpose

Specifies the cache configuration for a specific execution machine.

If you know the type of execution system for a program, and that system has its
instruction or data cache configured differently from the default case, use this

option to specify the exact cache characteristics. The compiler uses this information
to calculate the benefits of cache-related optimizations.

Syntax
»»— -g—cache—=—"—Tevel—= 1 Y ><

i:Z:I assoCc—=——number—

3 auto

type—= C cost—=—cycles

Edz| line—=—-bytes

i size—=—~Kbytes
Defaults

Automatically determined by the setting of the -mtune (-qtune) option.

Parameters

assoc
Specifies the set associativity of the cache.

number
Is one of:
0 Direct-mapped cache
1 Fully associative cache

N>1 n-way set associative cache

auto
Automatically detects the specific cache configuration of the compiling
machine. This assumes that the execution environment will be the same as the
compilation environment.

cost
Specifies the performance penalty resulting from a cache miss.

cycles

Tevel
Specifies the level of cache affected. If a machine has more than one level of
cache, use a separate -qcache option.

level
Is one of:
1 Basic cache

Chapter 3. Compiler options reference 109

2 Level-2 cache or, if there is no level-2 cache, the table lookaside buffer
(TLB)

3 TLB

line
Specifies the line size of the cache.

bytes

An integer representing the number of bytes of the cache line.
size

Specifies the total size of the cache.
Kbytes

An integer representing the number of kilobytes of the total cache.
type

Specifies that the settings apply to the specified cache_type.
cache_type

Is one of:

c Combined data and instruction cache

d Data cache

i Instruction cache
Usage

The -mtune (-qtune) setting determines the optimal default -qcache settings for
most typical compilations. You can use the -qcache to override these default
settings. However, if you specify the wrong values for the cache configuration, or
run the program on a machine with a different configuration, the program will
work correctly but may be slightly slower.

Use the following guidelines when specifying -qcache suboptions:
* Specify information for as many configuration parameters as possible.

* If the target execution system has more than one level of cache, use a separate
-qcache option to describe each cache level.

* If you are unsure of the exact size of the cache(s) on the target execution
machine, specify an estimated cache size on the small side. It is better to leave
some cache memory unused than it is to experience cache misses or page faults
from specifying a cache size larger than actually present.

* The data cache has a greater effect on program performance than the instruction
cache. If you have limited time available to experiment with different cache
configurations, determine the optimal configuration specifications for the data
cache first.

* If you specify the wrong values for the cache configuration, or run the program
on a machine with a different configuration, program performance may degrade
but program output will still be as expected.

* The -04 and -05 optimization options automatically select the cache
characteristics of the compiling machine. If you specify the -qcache option
together with the -04 or -05 options, the option specified last takes precedence.

* Unless -qcache=auto is specified, you must specify both the type and level
suboptions when you use the -qcache option. Otherwise, a warning message is
issued.

110 XL C/C++: Compiler Reference for Little Endian Distributions

Predefined macros
None.
Examples

To tune performance for a system with a combined instruction and data level-1
cache, where cache is 2-way associative, 8 KB in size and has 64-byte cache lines,
enter:

x1c -04 -qcache=type=c:Tevel=1:size=8:1ine=64:assoc=2 file.c

Related information

+ [“-qcache” on page 108|

+ [-O, -qoptimize” on page 58|

+ [“-mtune (-qtune)” on page 103|

* ["-gipa” on page 129

+ |'Optimizing your applications'|in the XL C/C++ Optimization and Programming
Guide

-qcheck
Category

[Error checking and debugging]

Purpose

Generates code that performs certain types of runtime checking.

If a violation is encountered, a runtime error is raised by sending a SIGTRAP
signal to the process. Note that the runtime checks may result in slower

application execution.

Syntax

|—nocheck
check »<

F—a]]—

= bounds
—nobounds
—divzero
—nodivzero
—nullptr

—nonullptr
—stackclobber—-
—nostackclobber—
—unset

—nounset

»— -

Defaults

-qnocheck

Chapter 3. Compiler options reference 111

Parameters

all
"~ Enables all suboptions.

bounds | nobounds
Performs runtime checking of addresses for subscripting within an object of
known size. The index is checked to ensure that it will result in an address that
lies within the bounds of the object's storage. A trap will occur if the address
does not lie within the bounds of the object.

This suboption has no effect on accesses to a variable length array.

divzero | nodivzero
Performs runtime checking of integer division. A trap will occur if an attempt
is made to divide by zero.

nullptr | nonullptr
Performs runtime checking of addresses contained in pointer variables used to
reference storage. The address is checked at the point of use; a trap will occur
if the value is less than 512.

stackclobber | nostackclobber
Detects stack corruption of nonvolatile registers in the save area in user
programs. This type of corruption happens only if any of the nonvolatile
registers in the save area of the stack is modified.

unset | nounset
Checks for automatic variables that are used before they are set. A trap will
occur at run time if an automatic variable is not set before it is used.

The -qinitauto option initializes automatic variables. As a result, the
-ginitauto option hides uninitialized variables from the -qcheck=unset option.

Specifying the -qcheck option with no suboptions is equivalent to specifying
-qcheck=all.

Usage

You can specify the -qcheck option more than once. The suboption settings are
accumulated, but the later suboptions override the earlier ones.

You can use the all suboption along with the no... form of one or more of the other
options as a filter. For example, using:

x1c myprogram.c -qcheck=all:nonullptr

provides checking for everything except for addresses contained in pointer
variables used to reference storage. If you use all with the no... form of the
suboptions, all should be the first suboption.

Predefined macros

None.

Examples

The following code example shows the effect of -qcheck=nul1ptr:bounds:

void funcl(int* p)
p = 42; / Traps if p is a null pointer =/
}

112 XL C/C++: Compiler Reference for Little Endian Distributions

void func2(int i) {
int array[10];
array[i] = 42; /* Traps if i is outside range 0 - 9 */

The following code example shows the effect of -qcheck=divzero:
void func3(int a, int b) {

a/ b; /* Traps if b=0 =/
}

The following code example shows the effect of -qcheck=stackclobber:

void func4(char *p, int off, int value) {
*(ptoff)=value;

int foo() {
int i;
char boo[9];
i=24;
func4(boo, i, 66);
/* Traps here */
return 0;

}

int main() {
foo();
1

Note: The offset is subject to change at different optimization level. When -O2 or
lower optimization level is in effect, func4 will clobber the save area of foo because
*(p+off) is in the save area.

In function factorial, result is not initialized when n<=1. To detect an
uninitialized variable in factorial.c, enter the following command:

x1c -g -0 -qcheck=unset factorial.c

factorial.c contains the following code:

int factorial(int n) {
int result;

if (n>1) {
result = n

}

return result; /* line 8 =/

}

int main() {
int x = factorial(1l);
return x;

}

% factorial(n - 1);

The compiler issues the following informational message during compile time and
a trap occurs at line 8 during run time:

1500-099: (I) "factorial.c", line 8: "result" might be used before it is set.

Note: If you set -qcheck=unset at noopt, the compiler does not issue informational
messages at compile time.

Chapter 3. Compiler options reference 113

-qcompact
Category

[Optimization and tuning|

Purpose
Avoids optimizations that increase code size.

Syntax

[nocompact—l
»— -q compact >«

Defaults
-qnocompact
Usage

Code size is typically reduced by inhibiting optimizations that replicate or expand
code inline, such as inlining or loop unrolling. Execution time might increase.

This option takes effect only when it is specified at the -02 optimization level, or
higher.

Predefined macros

_ OPTIMIZE_SIZE__ is predefined to 1 when -qcompact and an optimization level
are in effect. Otherwise, it is undefined.

Examples

To compile myprogram.c, instructing the compiler to reduce code size whenever
possible, enter:

x1c myprogram.c -0 -qcompact

-qcrt,

nostartfiles (-qnocrt)
Category

Pragma equivalent

None.

Purpose

When -qcrt is in effect, the system startup routines are automatically linked. When
-nostartfiles (-qnocrt) is in effect, the system startup files are not used at link

time; only the files specified on the command line with the -1 flag are linked.

This option can be used in system programming to disable the automatic linking of
the startup routines provided by the operating system.

114 XL C/C++: Compiler Reference for Little Endian Distributions

Syntax

A\
A

»»— -nostartfiles

crt
»— -q |_nocr't »><
Defaults
-qert

Predefined macros
None.

Related information
* |“-glib, -nodefaultlibs (-qnolib)” on page 136|

-qdataimported, -qdatalocal, -qtocdata
Category

[Optimization and tuning|

Pragma equivalent

None.

Purpose

Marks data as local or imported.

Local variables are statically bound with the functions that use them. You can use
the -qdatalocal option to name variables that the compiler can assume to be local.

Alternatively, you can use the -qtocdata option to instruct the compiler to assume
all variables to be local.

Imported variables are dynamically bound with a shared portion of a library. You
can use the -qdataimported option to name variables that the compiler can assume
to be imported. Alternatively, you can use the -qnotocdata option to instruct the
compiler to assume all variables to be imported.

Chapter 3. Compiler options reference 115

Syntax

notocdata
dataimported
»r— —q |_ —l >«
_=—" yariable_name
tocdata |
datalocal
_=—Y variable_name

Defaults

-qdataimported or -gnotocdata: The compiler assumes all variables are imported.

Parameters

variable_name
The name of a variable that the compiler should assume to be local or
imported (depending on the option specified).

Names must be specified using their mangled names. To obtain C++
mangled names, compile your source to object files only, using the -¢ compiler
option, and use the nm operating system command on the resulting object file.

Specifying -qdataimported without any variable_name is equivalent to
-gnotocdata: all variables are assumed to be imported. Specifying -qdatalocal
without any variable_name is equivalent to -qtocdata: all variables are assumed
to be local.

Usage

If any variables that are marked as local are actually imported, incorrect code may
be generated and performance may decrease.

If you specify any of these options with no variables, the last option specified is
used. If you specify the same variable name on more than one option specification,
the last one is used.

Predefined macros

None.

-gqdirectstorage
Category

[Optimization and tuning]

Pragma equivalent

None.

116 XL C/C++: Compiler Reference for Little Endian Distributions

Purpose

Informs the compiler that a given compilation unit may reference
write-through-enabled or cache-inhibited storage.

Syntax

[nodirectstorage—l
»— -q directstorage

v
A

Defaults
-qnodirectstorage
Usage

Use this option with discretion. It is intended for programmers who know how the
memory and cache blocks work, and how to tune their applications for optimal
performance. To ensure that your application will execute correctly on all
implementations, you should assume that separate instruction and data caches
exist and program your application accordingly.

-geh (C++ only)
Category

[Object code controll

Pragma equivalent

None.

Purpose

Controls whether exception handling is enabled in the module being compiled.

Syntax

eh
o> gL noen]

Defaults

-qeh

Usage

When -geh is in effect, exception handling is enabled. If your program does not
use C++ structured exception handling, you can compile with -qnoeh to prevent

generation of code that is not needed by your application.

Specifying -qeh also implies -qrtti. If -qeh is specified together with -qnortti,
RTTI information will still be generated as needed.

Chapter 3. Compiler options reference 117

Predefined macros

_ EXCEPTIONS is predefined to 1 when -qeh is in effect; otherwise, it is
undefined.

Related information

* |“-grtti, -fno-rtti (-gnortti) (C++ only)” on page 161

* The -fexceptions option that GCC provides. For details, see the GCC online
documentation at fhttp:/ /gcc.gnu.org/onlinedocs /|

-gfloat
Category

[Floating-point and integer control|

Purpose

Selects different strategies for speeding up or improving the accuracy of
floating-point calculations.

Syntax

—nospnans

—norsqrt

—norrm— ——

—rngchk

—norelax

—nonans

—maf:

—nohsflt

—nohscmp1x

—gcclongdouble—

—fold
—nofenv

»»— -g—float—=—T——fenv ><

—nofold

—nogcclongdouble—

—hscmp1x

—hsflt

—nomaf

—nans

—relax

—norngchk

—r P

—rsqrt

'—spnans

Defaults

» -qfloat=nofenv:fold:gcclongdouble:nohscmplx:nohsflt:maf:nonans:
norelax:rngchk:norrm:norsqrt:nospnans

* -qfloat=rsqrt:norngchk when -qnostrict,
-gstrict=nooperationprecision:noexceptions, or the -03 or higher optimization
level is in effect.

118 XL C/C++: Compiler Reference for Little Endian Distributions

http://gcc.gnu.org/onlinedocs/

Parameters

fenv | nofenv
Specifies whether the code depends on the hardware environment and whether
to suppress optimizations that could cause unexpected results due to this
dependency.

Certain floating-point operations rely on the status of Floating-Point Status and
Control Register (FPSCR), for example, to control the rounding mode or to
detect underflow. In particular, many compiler built-in functions read values
directly from the FPSCR.

When nofenv is in effect, the compiler assumes that the program does not
depend on the hardware environment, and that aggressive compiler
optimizations that change the sequence of floating-point operations are
allowed. When fenv is in effect, such optimizations are suppressed.

You should use fenv for any code containing statements that read or set the
hardware floating-point environment, to guard against optimizations that could
cause unexpected behavior.

Any directives specified in the source code (such as the standard C
FENV_ACCESS pragma) take precedence over the option setting.

fold | nofold
Evaluates constant floating-point expressions at compile time, which may yield
slightly different results from evaluating them at run time. The compiler
always evaluates constant expressions in specification statements, even if you
specify nofold.

gcclongdouble | nogcclongdouble
Specifies whether the compiler uses GCC-supplied or IBM-supplied library
functions for 128-bit long double operations.

gcclongdouble ensures binary compatibility with GCC for mathematical
calculations. If this compatibility is not important in your application, you
should use nogcclongdouble for better performance. This suboption only has
an effect when 128-bit long double types are enabled with -q1db1128.

Note: Passing results from modules compiled with nogcclongdouble to
modules compiled with geclongdouble may produce different results for
numbers such as Inf, NaN and other rare cases. To avoid such
incompatibilities, the compiler provides built-in functions to convert IBM long
double types to GCC long double types; see [‘Binary floating-point built-in|
[functions” on page 229 for more information.

hscmp1x | nohscmplx
Speeds up operations involving complex division and complex absolute value.
This suboption, which provides a subset of the optimizations of the hsflt
suboption, is preferred for complex calculations.

hsf1t | nohsflt
Speeds up calculations by preventing rounding for single-precision expressions
and by replacing floating-point division by multiplication with the reciprocal of
the divisor. hsflt implies hscmplx.

The hsflt suboption overrides the nans and spnans suboptions.
Note: Use -qfloat=hsflt on applications that perform complex division and

floating-point conversions where floating-point calculations have known
characteristics. In particular, all floating-point results must be within the

Chapter 3. Compiler options reference 119

defined range of representation of single precision. Use with discretion, as this
option may produce unexpected results without warning. For complex
computations, it is recommended that you use the hsemplx suboption
(described above), which provides equivalent speed-up without the
undesirable results of hsflt.

maf | nomaf
Makes floating-point calculations faster and more accurate by using
floating-point multiply-add instructions where appropriate. The results may
not be exactly equivalent to those from similar calculations performed at
compile time or on other types of computers. Negative zero results may be
produced. Rounding towards negative infinity or positive infinity will be
reversed for these operations. This suboption may affect the precision of
floating-point intermediate results. If -qfloat=nomaf is specified, no
multiply-add instructions will be generated unless they are required for
correctness.

nans | nonans
Allows you to use the -qflttrap=invalid:enable option to detect and deal
with exception conditions that involve signaling NaN (not-a-number) values.
Use this suboption only if your program explicitly creates signaling NaN
values, because these values never result from other floating-point operations.

relax | norelax
Relaxes strict IEEE conformance slightly for greater speed, typically by
removing some trivial floating-point arithmetic operations, such as adds and
subtracts involving a zero on the right. These changes are allowed if either
-gstrict=noieeefp or -qfloat=relax is specified.

rngchk | norngchk
At optimization level -03 and above, and without -gstrict, controls whether
range checking is performed for input arguments for software divide and
inlined square root operations. Specifying norngchk instructs the compiler to
skip range checking, allowing for increased performance where division and
square root operations are performed repeatedly within a loop.

Note that with norngchk in effect the following restrictions apply:
* The dividend of a division operation must not be +/-INFE.

* The divisor of a division operation must not be 0.0, +/- INF, or
denormalized values.

* The quotient of dividend and divisor must not be +/-INF.
* The input for a square root operation must not be INF.

If any of these conditions are not met, incorrect results may be produced. For
example, if the divisor for a division operation is 0.0 or a denormalized
number (absolute value < 2% for double precision, and absolute value < 2%
for single precision), NaN, instead of INF, may result; when the divisor is +/-
INFE, NaN instead of 0.0 may result. If the input is +INF for a sqrt operation,
NaN, rather than INF, may result.

norngchk is only allowed when -gnostrict is in effect. If -qstrict,
-gstrict=infinities, -gstrict=operationprecision, or -qstrict=exceptions is
in effect, norngchk is ignored.

rrm | norrm
Prevents floating-point optimizations that require the rounding mode to be the
default, round-to-nearest, at run time, by informing the compiler that the
floating-point rounding mode may change or is not round-to-nearest at run

120 XL C/C++: Compiler Reference for Little Endian Distributions

time. You should use rrm if your program changes the runtime rounding mode
by any means; otherwise, the program may compute incorrect results.

rsqrt | norsqrt
Speeds up some calculations by replacing division by the result of a square
root with multiplication by the reciprocal of the square root.

rsqrt has no effect unless -gignerrno is also specified; errno will not be set for
any sqrt function calls.

If you compile with the -03 or higher optimization level, rsqrt is enabled
automatically. To disable it, also specify -qstrict, -qstrict=nans,
-gstrict=infinities, -qstrict=zerosigns, or -gstrict=exceptions.

spnans | nospnans
Generates extra instructions to detect signalling NaN on conversion from
single-precision to double-precision.

Note: For details about the relationship between -qfloat suboptions and their
-gstrict counterparts, see [“-gstrict” on page 170,

Usage

Using -qfloat suboptions other than the default settings might produce incorrect
results in floating-point computations if the system does not meet all required
conditions for a given suboption. Therefore, use this option only if the
floating-point calculations involving IEEE floating-point values are manipulated
and can properly assess the possibility of introducing errors in the program.

If the -gstrict | -gnostrict and float suboptions conflict, the last setting
specified is used.

Predefined macros
Examples

To compile myprogram.c so that the constant floating-point expressions are
evaluated at compile time and multiply-add instructions are not generated, enter:

x1c myprogram.c -qfloat=fold:nomaf

Related information

+ [“-mcpu (-qarch)” on page 101

+ |“-ftrapping-math (-gflttrap)” on page 81|

* [“-gstrict” on page 170|

+ |'Handling floating-point operations'|in the XL C/C++ Optimization and
Programming Guide

-gfullpath
Category

[Error checking and debugging]

Chapter 3. Compiler options reference 121

Purpose

When used with the -g or -qlinedebug option, this option records the full, or
absolute, path names of source and include files in object files compiled with
debugging information, so that debugging tools can correctly locate the source
files.

When fullpath is in effect, the absolute (full) path names of source files are
preserved. When nofullpath is in effect, the relative path names of source files are

preserved.

Syntax

[noqupath
»»— -q fullpath ><

Defaults

-qnofullpath

Usage

If your executable file was moved to another directory, the debugger would be
unable to find the file unless you provide a search path in the debugger. You can
use fullpath to ensure that the debugger locates the file successfully.
Predefined macros

None.

Related information

* |“-glinedebug” on page 138|
s [-¢” on page 90

-ghot
Category

[Optimization and tuning|

Purpose

Performs high-order loop analysis and transformations (HOT) during optimization.
The -qhot compiler option is a powerful alternative to hand tuning that provides
opportunities to optimize loops and array language. This compiler option will

always attempt to optimize loops, regardless of the suboptions you specify.

Syntax

122 XL C/C++: Compiler Reference for Little Endian Distributions

»— —q

nohot
|_hot »<

D

noarraypad

—arraypad |_ _|
=—number

1
—level—= |_O—|

—vector
—novector:
—fastmath
—nofastmath

Defaults

-gnohot
-qhot=noarraypad:level=0:novector:fastmath when -03 is in effect.
-qhot=noarraypad:level=1:vector:fastmath when -04 or -05 is in effect.

Specifying -ghet without suboptions is equivalent to
-qhot=noarraypad:level=1:vector:fastmath.

Parameters

arraypad (option only) | noarraypad (option only)

Permits the compiler to increase the dimensions of arrays where doing so
might improve the efficiency of array-processing loops. (Because of the
implementation of the cache architecture, array dimensions that are powers of
two can lead to decreased cache utilization.) Specifying -ghot=arraypad when
your source includes large arrays with dimensions that are powers of 2 can
reduce cache misses and page faults that slow your array processing programs.
This can be particularly effective when the first dimension is a power of 2. If
you use this suboption with no number, the compiler will pad any arrays
where it infers there may be a benefit and will pad by whatever amount it
chooses. Not all arrays will necessarily be padded, and different arrays may be
padded by different amounts. If you specify a number, the compiler will pad
every array in the code.

Note: Using arraypad can be unsafe, as it does not perform any checking for
reshaping or equivalences that may cause the code to break if padding takes
place.

number (option only)

A positive integer value representing the number of elements by which each
array will be padded in the source. The pad amount must be a positive integer
value. It is recommended that pad values be multiples of the largest array
element size, typically 4, 8, or 16.

level=0 (option only)

Performs a subset of the high-order transformations and sets the default to
novector:noarraypad:fastmath.

level=1 (option only)

Performs the default set of high-order transformations.

vector (option only) | novector

When specified with -qnostrict and -qignerrno, or an optimization level of
-03 or higher, vector causes the compiler to convert certain operations that are

Chapter 3. Compiler options reference 123

performed in a loop on successive elements of an array (for example, square
root, reciprocal square root) into a call to a routine in the Mathematical
Acceleration Subsystem (MASS) library in libxlopt. The vector suboption
supports single and double-precision floating-point mathematics, and is useful
for applications with significant mathematical processing demands.

novector disables the conversion of loop array operations into calls to MASS
library routines.

Since vectorization can affect the precision of your program's results, if you are
using -03 or higher, you should specify -ghot=novector if the change in
precision is unacceptable to you.

fastmath (option only) | nofastmath (option only)
You can use this suboption to tune your application to either use fast scalar
versions of math functions or use the default versions.

For C/C++, you must use this suboption together with -qignerrno, unless
-qignerrno is already enabled by other options.

-ghot=fastmath enables the replacement of math routines with available math
routines from the XLOPT library only if -gstrict=nolibrary is enabled.

-ghot=nofastmath disables the replacement of math routines by the XLOPT
library. -qghot=fastmath is enabled by default if -qhot is specified regardless of
the hot level.

Usage

If you do not also specify an optimization level when specifying -qhot on the
command line, the compiler assumes -02.

If you want to override the default level setting of 1 when using -04 or -05, be
sure to specify -qhot=1evel=0 or -qhot=1evel=2 after the other options.

You can use the -qreport option in conjunction with -ghot or any optimization
option that implies -ghot to produce a pseudo-C report showing how the loops
were transformed. The loop transformations are included in the listing report if the
-qreport option is also specified. This LOOP TRANSFORMATION SECTION of the listing
file also contains information about data prefetch insertion locations. In addition,
when you use -gprefetch=assistthread to generate prefetching assist threads, a
message Assist thread for data prefetching was generated also appears in the
LOOP TRANSFORMATION SECTION of the listing file. Specifying
-gprefetch=assistthread guides the compiler to generate aggressive data
prefetching at optimization level -03 -ghot or higher. For more information, see
[“-qreport” on page 156/

Predefined macros
None.

Related information

* [“-mcpu (-qarch)” on page 101
* [’-gsimd” on page 165|

* |"-gprefetch” on page 152|

* |“-greport” on page 156|

+ |”-O, -qoptimize” on page 58|
* |“-gstrict” on page 170|

124 XL C/C++: Compiler Reference for Little Endian Distributions

o |Using the Mathematical Acceleration Subsystem (MASS)|in the XL C/C++
Optimization and Programming Guide
* [“#pragma nosimd” on page 198|

-gignerrno
Category

[Optimization and tuning]|

Purpose

Allows the compiler to perform optimizations as if system calls would not modify
errno.

Some system library functions set errno when an exception occurs. When ignerrno
is in effect, the setting and subsequent side effects of errno are ignored. This option
allows the compiler to perform optimizations without regard to what happens to
errno.

Syntax

[noignerrno—l
»— -q ignerrno >«

Defaults
* -gqnoignerrno

* -gignerrno when the -03 or higher optimization level is in effect.
Usage

If you require both -03 or higher and the ability to set errno, you should specify
-gnoignerrno after the optimization option on the command line.

Predefined macros

C++ __IGNERRNO.__ is defined to 1 when -qignerrno is in effect; otherwise,
it is undefined.

Related information
* |“-O, -qoptimize” on page 58|

-ginitauto
Category

[Error checking and debugging]

Purpose

Initializes uninitialized automatic variables to a specific value, for debugging
purposes.

Chapter 3. Compiler options reference 125

Syntax

[noi ni tauto—l
> - initauto—=—hex_value >

Defaults
-gnoinitauto

Parameters

hex_value
A one- to eight-digit hexadecimal number.

* To initialize each byte of storage to a specific value, specify one or two digits for
the hex_value.

* To initialize each word of storage to a specific value, specify three to eight digits
for the hex_value.

* In the case where less than the maximum number of digits are specified for the
size of the initializer requested, leading zeros are assumed.

¢ In the case of word initialization, if an automatic variable is smaller than a
multiple of 4 bytes in length, the hex_value is truncated on the left to fit. For
example, if an automatic variable is only 1 byte and you specify five digits for
the hex_value, the compiler truncates the three digits on the left and assigns the
other two digits on the right to the variable. See ‘Examﬁle 1l

 If an automatic variable is larger than the hex_value in length, the compiler
repeats the hex_value and assigns it to the variable. See
* If the automatic variable is an array, the hex_value is copied into the memory

location of the array in a repeating pattern, beginning at the first memory
location of the array. See |ExamEle 2

* You can specify alphabetic digits as either uppercase or lowercase.
* The hex_value can be optionally prefixed with 0x, in which x is case-insensitive.

Usage

The -ginitauto option provides the following benefits:

* Setting hex_value to zero ensures that all non-variably modified automatic
variables are cleared before being used.

* You can use this option to initialize variables of real or complex type to a
signaling or quiet NaN, which helps locate uninitialized variables in your
program.

This option generates extra code to initialize the value of automatic variables. It
reduces the runtime performance of the program and is to be used for debugging
purposes only.

Restrictions:

* Objects that are equivalenced, structure components, and array elements are not
initialized individually. Instead, the entire storage sequence is initialized
collectively.

* The -qinitauto=hex_value option does not initialize variable length arrays or
memory allocated through the __alloca function.

126 XL C/C++: Compiler Reference for Little Endian Distributions

Predefined macros

* __INITAUTO__ is defined to the least significant byte of the hex_value that is
specified on the -qinitauto option or pragma; otherwise, it is undefined.

* __ INITAUTO_W__ is defined to the byte hex_value, repeated four times, or to the
word hex_value, which is specified on the -qinitaute option or pragma;
otherwise, it is undefined.

For example:

* For option -qinitauto=0xABCD, the value of __INITAUTO__ is 0xCDu, and the
value of __INITAUTO_W__ is 0x0000ABCDu.

* For option -ginitauto=0xCD, the value of _ INITAUTO__ is 0xCDu, and the
value of _ INITAUTO_W__ is OxCDCDCDCDu.

Examples

Example 1: Use the -qinitauto option to initialize automatic variables of scalar
types.

#include <stdio.h>

int main()
{
char a;
short b;
int c;
long long int d;

printf("char a = 0x%X\n",(char)a);

printf("short b = 0x%X\n", (short)b);

printf("int ¢ = 0x%X\n",c);

printf("long Tong int d = 0x%11X\n",d);
1

If you compile the program with -qinitauto=AABBCCDD, for example, the result is as
follows:

char a = 0xDD

short b = OxFFFFCCDD

int ¢ = OxAABBCCDD

long Tong int d = OxAABBCCDDAABBCCDD

Example 2: Use the -qinitauto option to initialize automatic array variables.

#include <stdio.h>
#define ARRAY SIZE 5

int main()
{
char a[5];
short b[5];
int c[5];
long long int d[5];

printf("array of char: ");

for (int i = 0; i<ARRAY SIZE; i++)
printf("0x%1X ", (unsigned)a[i]);

printf("\n");

printf("array of short: ");

for (int i = 0; i<ARRAY_SIZE; i++)
printf("0x%1X ", (unsigned)b[i]);

printf("\n");

Chapter 3. Compiler options reference 127

printf("array of int: ");

for (int i = 0; i<ARRAY_SIZE; i++)
printf("0x%1X ", (unsigned)c[i]);

printf("\n");

printf("array of long long int: ");
for (int i = 0; i<ARRAY_SIZE; i++)
printf("0x%1X ", (unsigned)d[i]);
printf("\n");
}

If you compile the program with -qinitauto=AABBCCDD, for example, the result is as
follows:

array of char: OxAA 0xBB OxCC OxDD OxAA

array of short: OxAABB OxCCDD OxAABB 0xCCDD OxAABB

array of int: OxAABBCCDD OxAABBCCDD OxAABBCCDD OxAABBCCDD OxAABBCCDD

array of Tong long int: OxAABBCCDDAABBCCDD OxAABBCCDDAABBCCDD OxAABBCCDDAABBCCDD
OxAABBCCDDAABBCCDD ©xAABBCCDDAABBCCDD

-giniglue
Category

[Object code controll

Purpose

When used with -02 or higher optimization, inlines glue code that optimizes
external function calls in your application.

Glue code or Program Linkage Table code, generated by the linker, is used for passing
control between two external functions. When -qinlglue is in effect, the optimizer
inlines glue code for better performance. When -qnoinlglue is in effect, inlining of
glue code is prevented.

Syntax

inlglue
»>— -q—[noinlgﬂ:'

v
A

Defaults
e -qinlglue

Usage
Inlining glue code can cause the code size to grow. Specifying -qcompact overrides
the -qinlglue setting to prevent code growth. If you want -qinlglue to be enabled,

do not specify -qcompact.

Specifying -qnoinlglue or -qcompact can degrade performance; use these options
with discretion.

The -qinlglue option only affects function calls through pointers or calls to an

external compilation unit. For calls to an external function, you should specify that
the function is imported by using, for example, the -qprocimported option.

128 XL C/C++: Compiler Reference for Little Endian Distributions

-qipa

Predefined macros
None.
Related information

* [“-gcompact” on page 114
+ [“-mtune (-qtune)” on page 103|

Category

[Optimization and tuning|

Pragma equivalent
None.
Purpose

Enables or customizes a class of optimizations known as interprocedural analysis
(IPA).

IPA is a two-step process: the first step, which takes place during compilation,
consists of performing an initial analysis and storing interprocedural analysis
information in the object file. The second step, which takes place during linking,
and causes a complete recompilation of the entire application, applies the
optimizations to the entire program.

You can use -qipa during the compilation step, the link step, or both. If you
compile and link in a single compiler invocation, only the link-time suboptions are
relevant. If you compile and link in separate compiler invocations, only the
compile-time suboptions are relevant during the compile step, and only the
link-time suboptions are relevant during the link step.

Syntax

-gipa compile-time syntax

noipa
»— -q ripa | >

[obj ect
= noobject

-gipa link-time syntax

Chapter 3. Compiler options reference 129

Y
A

noipa
»— —q |_1'pa

o

exits—=—"—function_name

v

—infrequentlabel—=

—level—= ré—l
L,]

—list
|—= fi le_name——|
E] ong
short

B

label_name

—1owfreq—=—"-function_name
|—unknown—
—missing—= safe
i:iso]ated—
pure
edium—
—partition—= small
l—]arge—
isolated——=—"—function_name
pure
safe
unknown—
—file_name

Defaults
* -gnoipa

Parameters

You can specify the following parameters during a separate compile step only:

object | noobject
Specifies whether to include standard object code in the output object files.

Specifying noobject can substantially reduce overall compile time by not
generating object code during the first IPA phase. Note that if you specify -$S
with noobject, noobject will be ignored.

If compiling and linking are performed in the same step and you do not
specify the -S or any listing option, -qipa=noobject is implied.

Specifying -qipa with no suboptions on the compile step is equivalent to
-qgipa=object.

You can specify the following parameters during a combined compilation and link
stepin the same compiler invocation, or during a separate link step only:

clonearch | noclonearch
This suboption is no longer supported. Consider using -qtune=balanced.

130 XL C/C++: Compiler Reference for Little Endian Distributions

cloneproc | nocloneproc
This suboption is no longer supported. Consider using -qtune=balanced.

exits
Specifies names of functions which represent program exits. Program exits are
calls which can never return and can never call any function which has been
compiled with IPA pass 1. The compiler can optimize calls to these functions
(for example, by eliminating save/restore sequences), because the calls never
return to the program. These functions must not call any other parts of the
program that are compiled with -qipa.

infrequentlabel
Specifies user-defined labels that are likely to be called infrequently during a
program run.

label_name
The name of a label, or a comma-separated list of labels.

isolated
Specifies a comma-separated list of functions that are not compiled with -qipa.
Functions that you specify as isolated or functions within their call chains
cannot refer directly to any global variable.

Tevel
Specifies the optimization level for interprocedural analysis. Valid suboptions
are as follows:

0 Performs only minimal interprocedural analysis and optimization.

1 Enables inlining, limited alias analysis, and limited call-site tailoring.
2

Performs full interprocedural data flow and alias analysis.

If you do not specify a level, the default is 1.

To generate data reorganization information, specify the optimization level
-qipa=level=2 or -05 together with -qreport. During the IPA link phase, the
data reorganization messages for program variable data are produced in the
data reorganization section of the listing file. Reorganizations include array
splitting, array transposing, memory allocation merging, array interleaving,
and array coalescing.

Tist
Specifies that a listing file be generated during the link phase. The listing file
contains information about transformations and analyses performed by IPA, as
well as an optional object listing for each partition.

If you do not specify a list_file_name, the listing file name defaults to a.lst. If
you specify -qipa=Tlist together with any other option that generates a listing
file, IPA generates an a.lst file that overwrites any existing a.lst file. If you have
a source file named a.c, the IPA listing will overwrite the regular compiler
listing a.lst. You can use the -qipa=1ist=list_file_name suboption to specify an
alternative listing file name.

Additional suboptions are one of the following suboptions:

short Requests less information in the listing file. Generates the Object File
Map, Source File Map and Global Symbols Map sections of the listing.

long Requests more information in the listing file. Generates all of the

Chapter 3. Compiler options reference 131

sections generated by the short suboption, plus the Object Resolution
Warnings, Object Reference Map, Inliner Report and Partition Map
sections.

lowfreq
Specifies functions that are likely to be called infrequently. These are typically
error handling, trace, or initialization functions. The compiler may be able to
make other parts of the program run faster by doing less optimization for calls
to these functions.

missing
Specifies the interprocedural behavior of functions that are not compiled with
-qipa and are not explicitly named in an unknown, safe, isolated, or pure
suboption.

Valid suboptions are one of the following suboptions:

safe Specifies that the missing functions do not indirectly call a visible (not
missing) function either through direct call or through a function
pointer.

isolated
Specifies that the missing functions do not directly reference global
variables accessible to visible function. Functions bound from shared
libraries are assumed to be isolated.

pure Specifies that the missing functions are safe and isolated and do not
indirectly alter storage accessible to visible functions. pure functions
also have no observable internal state.

unknown
Specifies that the missing functions are not known to be safe, isolated, or
pure. This suboption greatly restricts the amount of interprocedural
optimization for calls to missing functions.

The default is to assume unknown.

partition
Specifies the size of each program partition created by IPA during pass 2. Valid
suboptions are one of the following suboptions:

* small
* medium
* large

Larger partitions contain more functions, which result in better interprocedural
analysis but require more storage to optimize. Reduce the partition size if
compilation takes too long because of paging.

pure
Specifies pure functions that are not compiled with -qipa. Any function
specified as pure must be isolated and safe, and must not alter the internal state
nor have side-effects, defined as potentially altering any data visible to the
caller.

safe
Specifies safe functions that are not compiled with -qipa and do not call any
other part of the program. Safe functions can modify global variables, but may
not call functions compiled with -qipa.

unknown
Specifies unknown functions that are not compiled with -qipa. Any function

132 XL C/C++: Compiler Reference for Little Endian Distributions

specified as unknown can make calls to other parts of the program compiled
with -qipa, and modify global variables.

file_name
Gives the name of a file which contains suboption information in a special
format.

The file format is shown as follows:

... comment

attribute{, attribute} = name{, name}
missing = attribute{, attribute}
exits = name{, name}

Towfreq = name{, name}

list [= file-name | short | Tlong]
level =0 | 1] 2

partition = small | medium | large

where attribute is one of:
* exits

* lowfreq

* unknown

* safe

* isolated

* pure

Usage

Specifying -qipa automatically sets the optimization level to -02. For additional
performance benefits, you can also specify the -finline-functions (-qinline)
option. The -qipa option extends the area that is examined during optimization
and inlining from a single function to multiple functions (possibly in different
source files) and the linkage between them.

If any object file used in linking with -qipa was created with the -qipa=noobject
option, any file containing an entry point (the main program for an executable
program, or an exported function for a library) must be compiled with -qipa.

You can link objects created with different releases of the compiler, but you must
ensure that you use a linker that is at least at the same release level as the newer
of the compilers used to create the objects being linked.

Some symbols which are clearly referenced or set in the source code may be
optimized away by IPA, and may be lost to debug or nm outputs. Using IPA
together with the -g compiler will usually result in non-steppable output.

Note that if you specify -qipa with -#, the compiler does not display linker
information subsequent to the IPA link step.

For recommended procedures for using -qipa, see ['Optimizing your applications"
in the XL C/C++ Optimization and Programming Guide.

Predefined macros

None.

Chapter 3. Compiler options reference 133

Examples

The following example shows how you might compile a set of files with
interprocedural analysis:

xlc -c *.c -qgipa
x1c -0 product *.0 -qgipa

Here is how you might compile the same set of files, improving the optimization
of the second compilation, and the speed of the first compile step. Assume that
there exist a set of routines, user_tracel, user_trace2, and user_trace3, which are
rarely executed, and the routine user_abort that exits the program:

x1c -c *.c -gipa=noobject

x1c -c *.0 -gipa=lowfreg=user_trace[123]:exit=user_abort

Related information

» |“-finline-functions (-ginline)” on page 74|

* |“-gisolated_call”|

* |[“#pragma execution_frequency” on page 196|

* bqpdfl, -qpdf2|

+ [“-S” on page 63

* ['Optimizing your applications'|in the XL C/C++ Optimization and Programming
Guide

+ [Runtime environment variables|

-qisolated_call
Category

[Optimization and tuning|

Purpose

Specifies functions in the source file that have no side effects other than those
implied by their parameters.

Essentially, any change in the state of the runtime environment is considered a side
effect, including:

* Accessing a volatile object

* Modifying an external object

* Modifying a static object

* Modifying a file

* Accessing a file that is modified by another process or thread

* Allocating a dynamic object, unless it is released before returning

* Releasing a dynamic object, unless it was allocated during the same invocation
* Changing system state, such as rounding mode or exception handling

* Calling a function that does any of the above

Marking a function as isolated indicates to the optimizer that external and static
variables cannot be changed by the called function and that pessimistic references
to storage can be deleted from the calling function where appropriate. Instructions
can be reordered with more freedom, resulting in fewer pipeline delays and faster
execution in the processor. Multiple calls to the same function with identical
parameters can be combined, calls can be deleted if their results are not needed,
and the order of calls can be changed.

134 XL C/C++: Compiler Reference for Little Endian Distributions

Syntax

Option syntax

v

»»— -g—isolated_call—=

function >

Defaults
Not applicable.

Parameters

function
The name of a function that does not have side effects or does not rely on
functions or processes that have side effects. function is a primary expression
that can be an identifier, operator function, conversion function, or qualified
name. An identifier must be of type function or a typedef of function. JEzm
If the name refers to an overloaded function, all variants of that function are
marked as isolated calls.

Usage

The only side effect that is allowed for a function named in the option or pragma
is modifying the storage pointed to by any pointer arguments passed to the
function, that is, calls by reference. The function is also permitted to examine
nonvolatile external objects and return a result that depends on the nonvolatile
state of the runtime environment. Do not specify a function that causes any other
side effects; that calls itself; or that relies on local static storage. If a function is
incorrectly identified as having no side effects, the program behavior might be
unexpected or produce incorrect results.

Predefined macros
None.
Examples

To compile myprogram.c, specifying that the functions myfunction(int) and
classfunction(double) do not have side effects, enter:

x1c myprogram.c -qisolated call=myfunction:classfunction

Related information
* ['The const function attribute'| and ['The pure function attribute'|in the XL C/C++
Language Reference

-gkeepparm
Category

[Error checking and debugging]

Pragma equivalent

None.

Chapter 3. Compiler options reference 135

Purpose

When used with -02 or higher optimization, specifies whether procedure
parameters are stored on the stack.

A function usually stores its incoming parameters on the stack at the entry point.
However, when you compile code with optimization options enabled, the compiler
may remove these parameters from the stack if it sees an optimizing advantage in
doing so. When -qkeepparm is in effect, parameters are stored on the stack even
when optimization is enabled. When -qnokeepparm is in effect, parameters are
removed from the stack if this provides an optimization advantage.

Syntax

nokeeppar
| —q—[keepparm m—l ><

Defaults

-qnokeepparm

Usage

Specifying -qkeepparm that the values of incoming parameters are available to
tools, such as debuggers, by preserving those values on the stack. However, this
may negatively affect application performance.

Predefined macros

None.

Related information
* |“-O, -qoptimize” on page 58|

-glib, -nodefaultlibs (-gnolib)
Category

Pragma equivalent
None.
Purpose

Specifies whether standard system libraries and XL C/C++ libraries are to be
linked.

When -qlib is in effect, the standard system libraries and compiler libraries are
automatically linked. When -nodefaultlibs (-gnolib) is in effect, the standard
system libraries and compiler libraries are not used at link time; only the libraries
specified on the command line with the -1 flag will be linked.

136 XL C/C++: Compiler Reference for Little Endian Distributions

This option can be used in system programming to disable the automatic linking of
unneeded libraries.

Syntax

»»—-nodefaultlibs >«

Tib
>»— -q l__noh::_—| >

Defaults
-qlib
Usage

Using -nodefaultlibs (-qnolib) specifies that no libraries, including the system
libraries as well as the XL C/C++ libraries (these are found in the lib/ and lib64/
subdirectories of the compiler installation directory), are to be linked. The system
startup files are still linked, unless -nostartfiles (-gnocrt) is also specified.

Note: If your program references any symbols that are defined in the standard
libraries or compiler-specific libraries, link errors will occur. To avoid these
unresolved references when compiling with -nodefaultlibs (-gnolib), be sure to
explicitly link the required libraries by using the command flag -1 and the library
name.

Predefined macros
None.
Examples

To compile myprogram.c without linking to any libraries except the compiler library
libxlopt.a, enter:

x1c myprogram.c -nodefaultlibs -Txlopt

Related information
s |“-qert, -nostartfiles (-qnocrt)” on page 114

-glibansi
Category

[Optimization and tuning|

Pragma equivalent
#pragma options [no]libansi
Purpose

Assumes that all functions with the name of an ANSI C library function are in fact
the system functions.

Chapter 3. Compiler options reference 137

When libansi is in effect, the optimizer can generate better code because it will
know about the behavior of a given function, such as whether or not it has any
side effects.

Syntax
nolibansi
»— -q Tibansi 1 ><
Defaults
-qnolibansi

Predefined macros

C++ _ LIBANSI__ is defined to 1 when libansi is in effect; otherwise, it is not
defined.

-glinedebug
Category

[Error checking and debugging]

Pragma equivalent

None.

Purpose

Generates only line number and source file name information for a debugger.
When -qlinedebug is in effect, the compiler produces minimal debugging
information, so the resulting object size is smaller than that produced by the -g
debugging option. You can use the debugger to step through the source code, but
you will not be able to see or query variable information. The traceback table, if
generated, will include line numbers.

-qlinedebug is equivalent to -gl.

Syntax

n011nedebug
| -q—Ehnedebug ><

Defaults
-gqnolinedebug
Usage

When -qlinedebug is in effect, function inlining is disabled.

138 XL C/C++: Compiler Reference for Little Endian Distributions

-qlist

Avoid using -q1inedebug with -0 (optimization) option. The information produced
may be incomplete or misleading.

The -g option overrides the -q1linedebug option. If you specify -g with
-gnolinedebug on the command line, -qnolinedebug is ignored and a warning is
issued.

Predefined macros
None.
Examples

To compile myprogram.c to produce an executable program testing so you can step
through it with a debugger, enter:

x1c myprogram.c -o testing -qlinedebug

Related information
* [“-¢” on page 90|
* |“-O, -qoptimize” on page 58|

Category

[Listings, messages, and compiler information|

Purpose
Produces a compiler listing file that includes object and constant area sections.

Syntax

nolist
»»— -q |_11’st | »><

nooffset
= |_offset —l

Defaults
-qnolist

Parameters

offset | nooffset
Changes the offset of the PDEF header from 00000 to the offset of the start of
the text area. Specifying the option allows any program reading the .Ist file to
add the value of the PDEF and the line in question, and come up with the
same value whether offset or nooffset is specified. The offset suboption is
only relevant if there are multiple procedures in a compilation unit.

Specifying list without the suboption is equivalent to list=nooffset.

Chapter 3. Compiler options reference 139

Usage

When list is in effect, a listing file is generated with a .Ist suffix for each source file
named on the command line. For details of the contents of the listing file, see
[“Compiler listings” on page 13/

You can use the object or assembly listing to help understand the performance
characteristics of the generated code and to diagnose execution problems.

Predefined macros
None.
Examples

To compile myprogram.c and to produce a listing (Ist) file that includes object and
constant area sections, enter:

x1c myprogram.c -qlist

-gmaxmem
Category

[Optimization and tuning]

Purpose

Limits the amount of memory that the compiler allocates while performing
specific, memory-intensive optimizations to the specified number of kilobytes.

Syntax

v
A

»>— -g—maxmem—=—size_limit

Defaults
* -gmaxmem=8192 when -02 is in effect.
* -gmaxmem=-1 when the -03 or higher optimization level is in effect.

Parameters

size_limit
The number of kilobytes worth of memory to be used by optimizations. The
limit is the amount of memory for specific optimizations, and not for the
compiler as a whole. Tables required during the entire compilation process are
not affected by or included in this limit.

A value of -1 permits each optimization to take as much memory as it needs
without checking for limits.

Usage

A smaller limit does not necessarily mean that the resulting program will be
slower, only that the compiler may finish before finding all opportunities to
increase performance. Increasing the limit does not necessarily mean that the
resulting program will be faster, only that the compiler is better able to find
opportunities to increase performance if they exist.

140 XL C/C++: Compiler Reference for Little Endian Distributions

Setting a large limit has no negative effect on the compilation of source files when
the compiler needs less memory. However, depending on the source file being
compiled, the size of subprograms in the source, the machine configuration, and
the workload on the system, setting the limit too high, or to -1, might exceed
available system resources.

Predefined macros

None.

Examples

To compile myprogram.c so that the memory specified for local table is 16384
kilobytes, enter:

x1c myprogram.c -gmaxmem=16384

-gmakedep, -MD (-gmakedep=gcc)
Category

Pragma equivalent

None.

Purpose

Produces the dependency files that are used by the make tool for each source file.
The dependency output file is named with a .d suffix.

Syntax

»»—-g—makedep |_ _| >
=—gcc

Defaults
Not applicable.

Parameters

gcc
The format of the generated make rule to match the GCC format: the
dependency output file includes a single target that lists all of the main source
file's dependencies.

This suboption is equivalent to -MD.

If you specify -qmakedep with no suboption, the dependency output file specifies
a separate rule for each of the main source file's dependencies.

Chapter 3. Compiler options reference 141

Usage

For each source file with a .c, .C, .cpp, or .i suffix that is named on the command
line, a dependency output file is generated with the same name as the object file
but with a .d suffix. Dependency output files are not created for any other types of
input files. If you use the -0 option to rename the object file, the name of the
dependency output file is based on the name specified in the -0 option. For more
information, see the Examples section.

The dependency output files generated by these options are not make description
files; they must be linked before they can be used with the make command. For
more information about this command, see your operating system documentation.

The output file contains a line for the input file and an entry for each include file.
It has the general form:

file_name.o:include_file_name
file_name.o:file_name.suffix

Include files are listed according to the search order rules for the #include

preprocessor directive, described in [“Directory search sequence for include files”|
If the include file is not found, it is not added to the .d file.

Files with no include statements produce dependency output files that contain one
line listing only the input file name.

Predefined macros
None.
Examples

Example 1: To compile mysource.c and create a dependency output file named
mysource.d, enter:

xlc -c -gmakedep mysource.c

Example 2: To compile foo_src.c and create a dependency output file named
mysource.d, enter:

x1c -c -gmakedep foo_src.c -MF mysource.d

Example 3: To compile foo_src.c and create a dependency output file named
mysource.d in the deps/ directory, enter:

x1c -c -gmakedep foo_src.c -MF deps/mysource.d

Example 4: To compile foo_src.c and create an object file named foo_obj.o and a
dependency output file named foo_obj.d, enter:

xlc -c -gmakedep foo_src.c -o foo_obj.o

Example 5: To compile foo_src.c and create an object file named foo_obj.o and a
dependency output file named mysource.d, enter:

x1c -c -gmakedep foo_src.c -o foo_obj.o -MF mysource.d

Example 6: To compile foo_srcl.c and foo_src2.c to create two dependency
output files, named foo_srcl.d and foo_src2.d respectively, enter:

x1c -c -gmakedep foo_srcl.c foo _src2.c

142 XL C/C++: Compiler Reference for Little Endian Distributions

-gpath

Related information

* [“-0” on page 10|

+ [“Directory search sequence for include files” on page §|

* The -M, -MD, -MF, -MG, -MM, -MMD, -MP, -MQ, and -MT options that GCC provides.
For details, see the GCC online documentation at fhttp:/ /gcc.gnu.org /|

Category

[Compiler customization|

Pragma equivalent
None.
Purpose

Specifies substitute path names for XL C/C++ components such as the compiler,
assembler, linker, and preprocessor.

You can use this option if you want to keep multiple levels of some or all of the
XL C/C++ components and have the option of specifying which one you want to
use. This option is preferred over the -B and -t options.

Syntax

»— -g—path—=—"—a :—directory path ><
| b
C
L
L
L1
]
L1
p

Defaults

By default, the compiler uses the paths for compiler components defined in the
configuration file.

Parameters

directory path
The path to the directory where the alternate programs are located.

The following table shows the correspondence between -qpath parameters and the
component names:

Parameter Description Component name
The assembler as
b The low-level optimizer xICcode

Chapter 3. Compiler options reference 143

http://gcc.gnu.org/onlinedocs/
http://gcc.gnu.org/onlinedocs/

Parameter Description Component name

¢, C The C and C++ compiler xICentry
front end

d The disassembler dis

I (uppercase i) The high-level optimizer, ipa
compile step

L The high-level optimizer, link | ipa
step

1 (lowercase L) The linker Id

P The preprocessor n/a

Usage

The -qpath option overrides the -F, -t, and -B options.
Predefined macros

None.

Examples

To compile myprogram.c using a substitute xlc compiler in /1ib/tmp/mine/ enter:
x1c myprogram.c -qpath=c:/1ib/tmp/mine/

To compile myprogram.c using a substitute linker in /1ib/tmp/mine/, enter:
x1c myprogram.c -qpath=1:/1ib/tmp/mine/

Related information
* |”-B” on page 50
* |”-F” on page 5

* |“-t” on page 185|

-qpdf1, -qpdf2
Category

[Optimization and tuning]

Pragma equivalent

None.

Purpose

Tunes optimizations through profile-directed feedback (PDF), where results from
sample program execution are used to improve optimization near conditional

branches and in frequently executed code sections.

Optimizes an application for a typical usage scenario based on an analysis of how
often branches are taken and blocks of code are run.

144 XL C/C++: Compiler Reference for Little Endian Distributions

Syntax

—hnopdf2
—nopdfl
»»— -q——pdfl
=—pdfname file path—
=—unique
=—nounique
=—exename
=—defname
=—Tevel 0
-
2
—pdf2
=—pdfname—=—rfile_path—
=—exename
=—defname
Defaults

-qnopdfl, -qnopdf2

Parameters

defname

Reverts a PDF file to its default file name.

exename

Specifies the name of the generated PDF file according to the output file name
specified by the -o option. For example, you can use -qpdfl=exename -o func

func.c to generate a PDF file called .func_pdf.

Tevel=0 | 1 | 2

Specifies different levels of profiling information to be generated by the
resulting application. The following table shows the type of profiling
information supported on each level. The plus sign (+) indicates that the

profiling type is supported.

Table 20. Profiling type supported on each -qpdf1 level

Level
Profiling type 0 1
Block-counter profiling + +
Call-counter profiling + +
Single-pass profiling + +
Value profiling +

Multiple-pass profiling

Cache-miss profiling

-gpdfl=Tevel=1 is the default level. It is equivalent to -qpdfl. Higher PDF
levels profile more optimization opportunities but have a larger overhead.

Notes:

* Only one application compiled with the -qpdfl=1evel=2 option can be run at
a time on a particular computer.

Chapter 3. Compiler options reference

145

* Cache-miss profiling information has several levels. If you want to gather
different levels of cache-miss profiling information, set the PDF_PM_EVENT
environment variable to LIMISS, L2MISS, or L3MISS (if applicable)
accordingly. Only one level of cache-miss profiling information can be
instrumented at a time. L2 cache-miss is the default level.

* If you want to bind your application to the specified processor for
cache-miss profiling, set the PDF_BIND_PROCESSOR environment variable.
Processor 0 is set by default.

pdfname= file path
Specifies the directories and names for the PDF files and any existing PDF map
files. By default, if the PDFDIR environment variable is set, the compiler places
the PDF and PDF map files in the directory specified by PDFDIR. Otherwise, if
the PDFDIR environment variable is not set, the compiler places these files in
the current working directory. If the PDFDIR environment variable is set but
the specified directory does not exist, the compiler issues a warning message.
The name of the PDF map file follows the name of the PDF file if the
-gpdfl=unique option is not specified. For example, if you specify the
-qpdfl=pdfname=/home/joe/func option, the generated PDF file is called func,
and the PDF map file is called func_map. Both of the files are placed in the
/home/joe directory. You can use the pdfname suboption to do simultaneous
runs of multiple executable applications by using the same directory. It is
especially useful when tuning with PDF process on dynamic libraries.

unique | nounique
You can use the -qpdfl=unique option to avoid locking a single PDF file when
multiple processes are writing to the same PDF file in the PDF training step.
This option specifies whether a unique PDF file is created for each process
during run time. The PDF file name is <pdf file_name>.<pid>.
<pdf_file_name>is ._pdf by default or specified by other -qpdfl suboptions,
which include pdfname, exename, and defname. <pid> is the ID of running
process in the PDF training step. For example, if you specify the
-qpdfl=unique:pdfname=abc option, and there are two processes for PDF
training with the IDs 12345678 and 87654321, two PDF files abc.12345678 and
abc.87654321 are generated.

Note:

* When -qpdfl=unique is specified, only one PDF map file is generated. The
default name of the PDF map file is ._pdf_map.

* When -qpdfl=unique is specified, multiple PDF files with process IDs as

suffixes are generated. You must use the mergepdf program to merge all
these PDF files into one after the PDF training step.

Usage

The PDF process consists of the following three steps:

1. Compile your program with the -qpdfl option and a minimum optimization
level of -02. A PDF map file named ._pdf_map by default and a resulting
application are generated.

2. Run the resulting application with a typical data set. Profiling information is
written to a PDF file named ._pdf by default. This step is called the PDF
training step.

3. Recompile and link or relink the program with the -qpdf2 option and the
optimization level used for the -qpdfl option. The -qpdf2 process fine-tunes the
optimizations according to the profiling information collected when the
resulting application is run.

146 XL C/C++: Compiler Reference for Little Endian Distributions

Notes:

* The showpdf utility uses the PDF map file to display part of the profiling
information in text or XML format. For details, see |'Viewing profiling]
finformation with showpdf'|in the XL C/C++ Optimization and Programming Guide.
If you do not need to view the profiling information, specify the -qnoshowpdf
option during the -qpdfl phase so that the PDF map file is not generated. For
details of -qnoshowpdf, see in the XL C/C++ Compiler Reference.

* When option -04, -05, or any level of option -qipa is in effect, and you specify
the -qpdfl or -qpdf2 option at the link step but not at the compile step, the
compiler issues a warning message. The message indicates that you must
recompile your program to get all the profiling information.

* When the -qpdfl=pdfname option is used during the -qpdfl phase, you must use
the -qpdf2=pdfname option during the -qpdf2 phase for the compiler to recognize
the correct PDF file. This rule also applies to the -qpdf[1]|2]=exename option.

The compiler issues an information message with a number in the range of 0 - 100
during the -qpdf2 phase. If you have not changed your program between the
-qpdfl and -qpdf2 phases, the number is 100, which means that all the profiling
information can be used to optimize the program. If the number is 0, it means that
the profiling information is completely outdated, and the compiler cannot take
advantage of any information. When the number is less than 100, you can choose
to recompile your program with the -qpdfl option and regenerate the profiling
information.

Single-pass profiling

Single-pass profiling is supported on level 0 and 1 of the -qpdfl phase. If you
recompile your program and use either of the -qpdfl=1evel=0 or -qpdfl=level=1
option, the compiler removes the existing PDF file and the possible existing PDF
map file before generating a new application.

Multiple-pass profiling

Multiple-pass profiling is supported on level 2 of the -qpdfl phase. After
compiling a program with the -qpdfl=1evel=2 option when you train the resulting
application, you can recompile your program with the -qpdfl=1evel=2 option. The
profile information gathered previously is used to guide further instrumentation.
When you train the resulting application again, the profiling information is written
to a new profile file named ._pdf.1 by default. If you repeat this compiling and
PDF training several times, the PDF files are generated up to five times (._pdf.1 to
._pdf.5). If the compiler detects that all the PDF files names have been used, it
issues a warning message and overwrites the last PDF file ._pdf.5. If the compiler
cannot read any PDF files when compiling a program with the -qpdfl=Tevel=2
option, it issues a warning message to indicate that PDF files are not found. You
can get initial profiling information by using the -qpdfl=1evel=0 or
-qpdfl=Tevel=1 option, and then use the -qpdfl=1evel=2 option for more profiling
information.

Notes:

* If you have not specified the -qnoshowpdf option, PDF map files that correspond
to the PDF files are also generated, with the default names ._pdf_map,
._pdf.1_map, and so on up to ._pdf.5_map.

* If you use the -qpdf2=pdfname option to specify a PDF file, specify a file name
that does not end with a numeric suffix from .1 to .5. Otherwise, the compiler
looks for wrong files. For example, if you specify the -qpdf2=pdfname=func.2

Chapter 3. Compiler options reference 147

option during the -qpdf2 phase, the compiler looks for the PDF files named
(func.2, func.2.1, func.2.2, func.2.3), which might not exist. If you specify the
-qpdf2=pdfname=func option without the numeric suffix, the compiler looks for
(func, func.1, func.2, func.3).

Other related options

You can use the following option with the -qpdfl option:

-gprefetch
When you run the -gprefetch=assistthread option to generate data
prefetching assist threads, the compiler uses the delinquent load information to
perform analysis and generate them. The delinquent load information can be

gathered from dynamic profiling using the -qpdfl=1evel=2 option. For more
information, see

-qshowpdf
Provides additional information to the profile file. See [’-qgshowpdf” on page|
for more information.

For recommended procedures of using PDF, see ['Using profile-directed feedback'|
in the XL C/C++ Optimization and Programming Guide.

The following utility programs, found in /opt/ibm/x1C/13.1.1/bin/, are available
for managing the directory to which profiling information is written:

cleanpdf

»»—cleanpdf <
I—pdfdir"—| I—-u—| |—-1’—pdfname—|

Removes all PDF files or the specified PDF files, including PDF files with
process ID suffixes. Removing profiling information reduces runtime
overhead if you change the program and then go through the PDF process
again.

pdfdir Specifies the directory that contains the PDF files to be removed. If
pdfdir is not specified, the directory is set by the PDFDIR
environment variable; if PDFDIR is not set, the directory is the
current directory.

-f pdfname
Specifies the name of the PDF file to be removed. When specified,
files with the naming convention
pdfname.<multiple_pass_profiling_times>, if applicable, are also
removed. <multiple_pass_profiling_times> is a numeric suffix from 1
to 5.

If -f pdfname is not specified, ._pdf and files with the naming
convention ._pdf.<multiple_pass_profiling times>, if applicable,
are removed.

-u Removes the PDF file that is specified by pdfname and files with
the following naming convention when applicable:

* pdfname.<pid>, where <pid> is the ID of running process in the
PDF training step

* pdfname.<multiple pass profiling times>.<pid>

148 XL C/C++: Compiler Reference for Little Endian Distributions

If -f pdfname is not specified, removes ._pdf and files with the
following naming convention when applicable:

* ._pdf.<pid>
* ._pdf.<multiple_pass_profiling times>.<pid>

Run cleanpdf only when you finish the PDF process for a particular
application. Otherwise, if you want to resume by using PDF process with
that application, you must compile all of the files again with -qpdfl.

mergepdf

»»>—mergepdf— inputJ—

|— -r—scal ingJ

-o—output |_ -nJ |_ -VJ »><

Merges two or more PDF files into a single PDF file.

-1 scaling
Specifies the scaling ratio for the PDF file. This value must be
greater than zero and can be either an integer or a floating-point
value. If not specified, a ratio of 1.0 is assumed.

input Specifies the name of a PDF input file, or a directory that contains
PDF files.

-0 output
Specifies the name of the PDF output file, or a directory to which
the merged output is written.

-n If specified, PDF files are not normalized. If not specified,
mergepdf normalizes files based on an internally calculated ratio
before applying any user-defined scaling factor.

-v Specifies verbose mode, and causes internal and user-specified
scaling ratios to be displayed to standard output.
resetpdf
»»—resetpdf ><
|—pdfdir—| |——u—| |——f—pdfname—|

Same as cleanpdf.
showpdf

Displays part of the profiling information written to PDF and PDF map
files. To use this command, you must first compile your program and use
the -qpdfl option. See ['Viewing profiling information with showpdf'|in the
XL C/C++ Optimization and Programming Guide for more information.

Predefined macros
None.
Examples

The following example uses the -qpdfl=1evel=0 option to reduce possible runtime
instrumentation overhead:

Chapter 3. Compiler options reference 149

#Compile all the files with -qpdfl=level=0
xTc -gpdfl=Tevel=0 -03 filel.c file2.c file3.c

#Run with one set of input data
./a.out < sample.data

#Recompile all the files with -qpdf2
x1c -gpdf2 -03 filel.c file2.c file3.c

#1f the sample data is typical, the program
#can now run faster than without the PDF process

The following example uses the -qpdfl=1evel=1 option:

#Compile all the files with -qgpdfl
x1c -gqpdfl -03 filel.c file2.c file3.c

#Run with one set of input data
./a.out < sample.data

#Recompile all the files with -qpdf2
xlc -qpdf2 -03 filel.c file2.c file3.c

#1f the sample data is typical, the program
#can now run faster than without the PDF process

The following example uses the -qpdfl=1evel=2 option to gather cache-miss
profiling information:

#Compile all the files with -gqpdfl=Tevel=2
x1c -gpdfl=level=2 -03 filel.c file2.c file3.c

#Set PM_EVENT=L2MISS to gather L2 cache-miss profiling
#information
export PDF_PM_EVENT=L2MISS

#Run with one set of input data
./a.out < sample.data

#Recompile all the files with -qpdf2
xlc -gpdf2 -03 filel.c file2.c file3.c

#1f the sample data is typical, the program
#can now run faster than without the PDF process

The following example uses the -qpdfl=level=2 option with multiple runs to
gather cache-miss profiling information at different cache levels:

#Compile all the files with -gpdfl=Tevel=2
x1c -gpdfl=level=2 -03 filel.c file2.c file3.c

#Set PM_EVENT=LIMISS to gather L1 cache-miss profiling
#information
export PDF_PM_EVENT=LIMISS

#Run with one set of input data
./a.out < sample.data

#Set PM_EVENT=L2MISS to gather L2 cache-miss profiling
#information
export PDF_PM_EVENT=L2MISS

#Run with one set of input data
./a.out < sample.data

#Recompile all the files with -qpdf2
xlc -gpdf2 -03 filel.c file2.c file3.c

150 XL C/C++: Compiler Reference for Little Endian Distributions

#I1f the sample data is typical, the program
#can now run faster than without the PDF process

The following example demonstrates the process of multiple-pass profiling:

#Compile all the files with -gpdfl=Tevel=2. The static profiling
#information is recorded in a file named ._pdf_map by default
x1c -gpdfl=level=2 -03 filel.c file2.c file3.c

#Run with one set of input data, the profiling information
#is recorded in a file named . _pdf by default
./a.out < sample.data

#Recompile all the files with -gpdfl=level=2 again

#The compiler reads the previous profiling information, refines
#instrumentation, and generates a new instrumented

#executable. The static profiling information

#is recorded in ._pdf.1 _map

x1c -gpdfl=level=2 -03 filel.c file2.c file3.c

#Run it again, the profiling information is recorded in
#._pdf.1
./a.out < sample.data

#Recompile all the files with -qpdf2
xlc -gpdf2 -03 filel.c file2.c file3.c

#1f the sample data is typical, the program
#can now run faster than without the PDF process

The following example demonstrates the use of the PDF_BIND_PROCESSOR
environment variable:

#Compile all the files with -gpdfl=Tevel=1
xlc -gpdfl=level=1 -03 filel.c file2.c file3.c

#Set PDF_BIND_PROCESSOR environment variable so that
#all processes for this executable are run on Processor 1
export PDF_BIND PROCESSOR=1

#Run executable with sample input data
./a.out < sample.data

#Recompile all the files with -qpdf2
x1c -gqpdf2 -03 filel.c file2.c file3.c

#I1f the sample data is typical, the program
#can now run faster than without the PDF process

The following example demonstrates the use of the -qpdf[1|2]=exename option:

#Compile all the files with -gpdfl=exename
x1c -gpdfl=exename -03 -o final filel.c file2.c file3.c

#Run executable with sample input data
./final < typical.data

#List the content of the directory

>]s -Irta

-rw-r--r-- 1 user staff 50 Dec 05 13:18 filel.c
-rw-r--r-- 1 user staff 50 Dec 05 13:18 file2.c
-rw-r--r-- 1 user staff 50 Dec 05 13:18 file3.c
-rwxr-xr-x 1 user staff 12243 Dec 05 17:00 final
-rwxr-Sr-- 1 user staff 762 Dec 05 17:03 .final_pdf

#Recompile all the files with -qpdf2=exename

Chapter 3. Compiler options reference

151

x1c -gpdf2=exename -03 -o final filel.c file2.c file3.c

#The program is now optimized using PDF information

The following example demonstrates the use of the -qpdf[1|2]=pdfname option:

#Compile all the files with -gpdfl=pdfname.The static profiling
#information is recorded in a file named final_map
x1c -gpdfl=pdfname=final -03 filel.c file2.c file3.c

#Run executable with sample input data.The profiling
#information is recorded in a file named final
./a.out < typical.data

#List the content of the directory

>1s -Irta

-rw-r--r-- 1 user staff 50 Dec 05 13:18 filel.c
-rw-r--r-- 1 user staff 50 Dec 05 13:18 file2.c
-rw-r--r-- 1 user staff 50 Dec 05 13:18 file3.c
-rwxr-xr-x 1 user staff 12243 Dec 05 18:30 a.out
-rwxr-Sr-- 1 user staff 762 Dec 05 18:32 final

#Recompile all the files with -qpdf2=pdfname
x1c -qpdf2=pdfname=final -03 filel.c file2.c file3.c

#The program is now optimized using PDF information

Related information

* |“-gshowpdf” on page 164|

* |“-gipa” on page 129

* |gprefetch|

* [“-greport” on page 156|

+ ['Optimizing your applications'|in the XL C/C++ Optimization and Programming
Guide

+ [“Runtime environment variables” on page 18|

* |'Profile-directed feedback'|in the XL C/C++ Optimization and Programming Guide

-qprefetch
Category

[Optimization and tuning|

Pragma equivalent
None.
Purpose

Inserts prefetch instructions automatically where there are opportunities to
improve code performance.

When -qprefetch is in effect, the compiler may insert prefetch instructions in
compiled code. When -gnoprefetch is in effect, prefetch instructions are not

inserted in compiled code.

Syntax

152 XL C/C++: Compiler Reference for Little Endian Distributions

—prefetch

[noassistthread—|
—= assistthread—= |_SMT_|
CMP-

_Enoaggressive—l
—= aggressive
=—dscr—=—uvalue
»»— -g—-—noprefetch ><

Defaults

-gprefetch=noassistthread:noaggressive:dscr=0

Parameters

assistthread | noassistthread
When you work with applications that generate a high cache-miss rate, you
can use -qprefetch=assistthread to exploit assist threads for data prefetching.
This suboption guides the compiler to exploit assist threads at optimization
level -03 -ghot or higher. If you do not specify -qprefetch=assistthread,
-gprefetch=noassistthread is implied.

CMP

For systems based on the chip multi-processor architecture (CMP), you can
use -gprefetch=assistthread=cmp.

SMT

For systems based on the simultaneous multi-threading architecture (SMT),
you can use -gprefetch=assistthread=smt.

Note: If you do not specify either CMP or SMT, the compiler uses the
default setting based on your system architecture.

aggressive | noaggressive
This suboption guides the compiler to generate aggressive data prefetching at
optimization level -03 or higher. If you do not specify aggressive,
-gprefetch=noaggressive is implied.

dscr
You can specify a value for the dscr suboption to improve the runtime
performance of your applications. The compiler sets the Data Stream Control
Register (DSCR) to the specified dscr value to control the hardware prefetch
engine. The value is valid only when -mcpu=pwr8 is in effect and the
optimization level is -02 or greater. The default value of dscr is 0.

value

The value that you specify for dscr must be 0 or greater, and representable
as a 64-bit unsigned integer. Otherwise, the compiler issues a warning
message and sets dscr to 0. The compiler accepts both decimal and
hexadecimal numbers, and a hexadecimal number requires the prefix of 0x.
The value range depends on your system architecture. See the product
information about the POWER Architecture for details. If you specify
multiple dscr values, the last one takes effect.

Chapter 3. Compiler options reference 153

Usage

The -qnoprefetch option does not prevent built-in functions such as
__prefetch_by_stream from generating prefetch instructions.

When you run -qprefetch=assistthread, the compiler uses the delinquent load
information to perform analysis and generates prefetching assist threads. The
delinquent load information can either be provided through the built-in
__mem_delay function (const void *delinquent_load_address, const unsigned int
delay_cycles), or gathered from dynamic profiling using -qpdfl=1evel=2.

When you use -qpdf to call -qprefetch=assistthread, you must use the traditional
two-step PDF invocation:
1. Run -gpdfl=Tlevel=2

2. Run -gqpdf2 -gprefetch=assistthread
Examples
Here is how you generate code using assist threads with _ MEM_DELAY:

Initial code:
int y[64], x[1089], w[1024];

void foo(void){
int i, j;
for (i = 0; i &1; 64; i++) {
for (j = 0; j < 1024; j++) {

/* what to prefetch? y[i]; inserted by the user */
__mem_delay(&y[i], 10);
y[i] = y[i] + x[i + 31 * w[il;
x[i +3 + 1] = y[i] * 2;
1
}
1

Assist thread generated code:
void foo@clone(unsigned thread_id, unsigned version)

{ if (!1) goto lab_1;

/* version control to synchronize assist and main thread */
if (version == @2version0) goto lab_5;

goto lab_1;
lab_5:
eCIV1 = 0;

do { /% id=1 guarded */ /* ~2 %/
if (!1) goto Tab_3;

@CIVO = 0;

do { /* id=2 guarded */ /* ™4 */
/* region = 0 */

/* __dcbt call generated to prefetch y[i] access */

154 XL C/C++: Compiler Reference for Little Endian Distributions

__dcbt(((char *)&y + (4)*(@CIV1)))
@CIVO = @CIVO + 1;
} while ((unsigned) @CIVO < 1024u); /* ~4 */

Tab_3:

@CIV1 = @CIV1 + 1;

} while ((unsigned) @CIV1 < 64u); /x ~2 x/
lab_1:

return;

}

Related information

* |march (-garch)

* [“-ghot” on page 122|

* |“-qpdfl, -qpdf2” on page 144

* |“-greport” on page 156|

+ [“_mem_delay” on page 355

-gpriority (C++ only)
Category

[Object code controll

Purpose
Specifies the priority level for the initialization of static objects.

The C++ standard requires that all global objects within the same translation unit
be constructed from top to bottom, but it does not impose an ordering for objects
declared in different translation units. The -gpriority option allows you to impose
a construction order for all static objects declared within the same load module.
Destructors for these objects are run in reverse order during termination.

Syntax

Option syntax

v
A

»>— -g—priority—=—number

Defaults
The default priority level is 65535.

Parameters

number
An integer literal in the range of 101 to 65535. A lower value indicates a higher
priority; a higher value indicates a lower priority. If you do not specify a
number, the compiler assumes 65535.

Chapter 3. Compiler options reference 155

Usage

In order to be consistent with the Standard, priority values specified within the
same translation unit must be strictly increasing. Objects with the same priority
value are constructed in declaration order.

Note: The C++ variable attribute init_priority can also be used to assign a

priority level to a shared variable of class type. See ['The init_priority variable|
in the XL C/C++ Language Reference for more information.

Examples

To compile the file myprogram.C to produce an object file myprogram.o so that
objects within that file have an initialization priority of 2000, enter:

x1c++ myprogram.C -c -gpriority=2000

Related information

* ['Initializing static objects in libraries"|in the XL C/C++ Optimization and
Programming Guide

-greport
Category

[Listings, messages, and compiler information|

Pragma equivalent

None.

Purpose

Produces listing files that show how sections of code have been optimized.

A listing file is generated with a .Ist suffix for each source file named on the
command line. When used with an option that enables vectorization, the listing file
shows a pseudo-C code listing and a summary of how program loops are
optimized. The report also includes diagnostic information to show why specific
loops could not be vectorized. For instance, when -qreport is used with
-gsimd=auto, messages are provided to identify non-stride-one references that can
prevent loop vectorization.

The compiler also reports the number of streams created for a given loop, which
include both load and store streams. This information is included in the Loop
Transformation section of the listing file. You can use this information to
understand your application code and to tune your code for better performance.
For example, you can distribute a loop which has more streams than the number
supported by the underlying architecture. The POWERS processors support both
load and store stream prefetch.

Syntax

noreport
»»— -q |_.“eport —l

v
A

156 XL C/C++: Compiler Reference for Little Endian Distributions

Defaults
-qnoreport
Usage

For -qreport to generate a loop transformation listing, you must also specify one
of the following options on the command line:

* -gipa=level=2

For -qreport to generate PDF information in the listing, you must specify the
following option in the command line:

* -qpdf2 -qreport

To generate data reorganization information, specify the optimization level
-qipa=level=2 or -05 together with -qreport. Reorganizations include array
splitting, array transposing, memory allocation merging, array interleaving, and
array coalescing.

To generate information about data prefetch insertion locations, use the
optimization level of -qghot, or any other option that implies -ghot together with
-gqreport. This information appears in the LOOP TRANSFORMATION SECTION of the
listing file. In addition, when you use -qprefetch=assistthread to generate
prefetching assist threads, the message: Assist thread for data prefetching was
generated also appears in the LOOP TRANSFORMATION SECTION of the listing file.

The pseudo-C code listing is not intended to be compilable. Do not include any of
the pseudo-C code in your program, and do not explicitly call any of the internal
routines whose names may appear in the pseudo-C code listing.

Predefined macros
None.
Examples

To compile myprogram.c so the compiler listing includes a report showing how
loops are optimized, enter:

x1c -ghot -03 -qreport myprogram.c

Related information
+ [“-ghot” on page 122|
* |“-gsimd” on page 165|
* |“-gipa” on page 129

-greserved_reg
Category

[Object code control|

Pragma equivalent

None.

Chapter 3. Compiler options reference 157

Purpose

Indicates that the given list of registers cannot be used during the compilation
except as a stack pointer, frame pointer or in some other fixed role.

You should use this option in modules that are required to work with other
modules that use global register variables or hand-written assembler code.

Syntax

»— -g—reserved_reg—=—"-register_name >

Defaults
Not applicable.

Parameters

register_name
A valid register name on the target platform. Valid registers are:

r0 to 131
General purpose registers

f0 to £31
Floating-point registers

v0 to v31
Vector registers (on selected processors only)

Usage

-qreserved_reg is cumulative, for example, specifying -qreserved_reg=r14 and
-qreserved_reg=r15 is equivalent to specifying -qreserved_reg=rl4:r15.

Duplicate register names are ignored.
Predefined macros

None.

Examples

To specify that myprogram.c reserves the general purpose registers r3 and r4, enter:

x1c myprogram.c -qreserved_reg=r3:r4

-gro
Category

[Object code controll

Purpose

Specifies the storage type for string literals.

158 XL C/C++: Compiler Reference for Little Endian Distributions

When ro or strings=readonly is in effect, strings are placed in read-only storage.
When noro or strings=writeable is in effect, strings are placed in read /write
storage.

Syntax

Option syntax

ro
»— -q |_no:| >

Pragma syntax

readonly
»—#—pragma—strings—(—[writeab1c_|) ><
Defaults
Strings are read-only for all invocation commands except cc. If the cc

invocation command is used, strings are writeable.
Strings are read-only.

Parameters

readonly (pragma only)
String literals are to be placed in read-only memory.

writeable (pragma only)
String literals are to be placed in read-write memory.

Usage

Placing string literals in read-only memory can improve runtime performance and
save storage. However, code that attempts to modify a read-only string literal may
generate a memory error.

The pragmas must appear before any source statements in a file.

Predefined macros

None.

Examples

To compile myprogram.c so that the storage type is writable, enter:
x1c myprogram.c -gnoro

Related information
* |“-qro” on page 158

* [“-qroconst” on page 160

Chapter 3. Compiler options reference 159

-groconst
Category

[Object code controll

Purpose
Specifies the storage location for constant values.

When roconst is in effect, constants are placed in read-only storage. When
noroconst is in effect, constants are placed in read/write storage.

Syntax

roconst—|
»>— —q—Enor‘oconst >«

Defaults

. -qroconst for all compiler invocations except cc and its derivatives.
-gnoroconst for the cc invocation and its derivatives.

. C++ -qroconst

Usage

Placing constant values in read-only memory can improve runtime performance,
save storage, and provide shared access. However, code that attempts to modify a
read-only constant value generates a memory error.

"Constant” in the context of the -qroconst option refers to variables that are
qualified by const, including const-qualified characters, integers, floats,
enumerations, structures, unions, and arrays. The following constructs are not
affected by this option:

* Variables qualified with volatile and aggregates (such as a structure or a union)
that contain volatile variables

* DPointers and complex aggregates containing pointer members

* Automatic and static types with block scope

* Uninitialized types

* Regular structures with all members qualified by const

 Initializers that are addresses, or initializers that are cast to non-address values

The -qroconst option does not imply the -qre option. Both options must be
specified if you want to specify storage characteristics of both string literals (-qro)
and constant values (-qroconst).

Predefined macros

None.

Related information
* ["-qro” on page 158|

160 XL C/C++: Compiler Reference for Little Endian Distributions

-qrtti, -fno-rtti (-qnortti) (C++ only)
Category

[Object code control|

Purpose

Generates runtime type identification (RTTI) information for exception handling
and for use by the typeid and dynamic_cast operators.

Syntax

rtti
»»— -q |_nor‘t:| >

»»— -f—no-rtti »<

Defaults

-grtti

Usage

For improved runtime performance, suppress RTTI information generation with
the -fno-rtti (-gnortti) setting.

You should be aware of the following effects when specifying the -qrtti compiler
option:

Contents of the virtual function table will be different when -qrtti is specified.
When linking objects together, all corresponding source files must be compiled
with the correct -qrtti option specified.

If you compile a library with mixed objects (-qrtti specified for some objects,
-fno-rtti (-gnortti) specified for others), you may get an undefined symbol
error.

Predefined macros

_ GXX_RTTI is predefined to a value of 1 when -grtti is in effect; otherwise, it
is undefined.

_ NO_RTTI__ is defined to 1 when -fno-rtti (-gnortti) is in effect; otherwise,
it is undefined.

_ RTTI_ALL__ is defined to 1 when -qrtti is in effect; otherwise, it is
undefined.

_ RTTI_DYNAMIC_CAST__ is predefined to a value of 1 when -qrtti is in
effect; otherwise, it is undefined.

_ RTTI_TYPE_INFO__ is predefined to a value of 1 when -qrtti is in effect;
otherwise, it is undefined.

Related information
* |“-geh (C++ only)” on page 117

Chapter 3. Compiler options reference 161

-gsaveopt
Category

[Object code controll

Pragma equivalent

None.

Purpose

Saves the command-line options used for compiling a source file, the user's
configuration file name and the options specified in the configuration files, the
version and level of each compiler component invoked during compilation, and

other information to the corresponding object file.

Syntax

A\
A

[nosaveopt—l
»»— -(saveopt

Defaults

-qnosaveopt

Usage

This option has effect only when compiling to an object (.o) file (that is, using the
-c option). Though each object might contain multiple compilation units, only one
copy of the command-line options is saved. Compiler options specified with

pragma directives are ignored.

Command-line compiler options information is copied as a string into the object
file, using the following format:

»»—0(#)—opt f invocation—options <
]
C

»»—Q(#)—cfg——config _file options_list ><
»>—Q(#)—env——env_var_definition ><
where:

f Signifies a Fortran language compilation.

c Signifies a C language compilation.

C Signifies a C++ language compilation.

invocation

Shows the command used for the compilation, for example, xlc.
options The list of command line options specified on the command line, with
individual options separated by space.

162 XL C/C++: Compiler Reference for Little Endian Distributions

config_file_options_list
The list of options specified by the options attribute in all configuration
files that take effect in the compilation, separated by space.
env_var_definition
The environment variables that are used by the compiler. Currently only
XLC_USR_CONFIG is listed.

Note: You can always use this option, but the corresponding information
is only generated when the environment variable XLC_USR_CONFIG is set.

For more information about the environment variable XLC_USR_CONFIG, see
[Compile-time and link-time environment variables}

Note: The string of the command-line options is truncated after 64k bytes.

Compiler version and release information, as well as the version and level of each
component invoked during compilation, are also saved to the object file in the
format:

Version— :—VV.RR.MMMM. LLLL |

»ew e on_l:camponen t_name—Version—:—VV.RR—(—product_name—)—Level—:—YYMMDD—:—componen t_ZeveZ_IDJ
where:

Vv Represents the version.

R Represents the release.

M Represents the modification.

L Represents the level.

component_name
Specifies the components that were invoked for this compilation, such as
the low-level optimizer.
product_name
Indicates the product to which the component belongs (for example, C/C++
or Fortran).
YYMMDD
Represents the year, month, and date of the installed update. If the update
installed is at the base level, the level is displayed as BASE.
component_level _ID
Represents the ID associated with the level of the installed component.

If you want to simply output this information to standard output without writing
it to the object file, use the --version (-qversion) option.

Predefined macros
None.
Examples

Compile t.c with the following command:

xlc t.c -c -gsaveopt -ghot

Issuing the strings -a command on the resulting t.o object file produces
information similar to the following:

IBM XL C/C++ for Linux, Version 13.1.1.0

opt ¢ /opt/ibm/x1C/13.1.1/bin/.orig/x1c -F/opt/ibm/x1C/13.1.1/etc/x1c.cfg.ubuntu.14.04.9cc.4.8.2
hello.c -c -gsaveopt -ghot

cfg -qlanglvi=extc99 -qalias=ansi -qthreaded -D_REENTRANT -D__ VACPP_MULTI _
-qtls -q64 -D_CALL_SYSV -D_ nul1=0 -D__NO_MATH_INLINES -gnopic

Chapter 3. Compiler options reference 163

-D_CALL_ELF=2 -Wno-parentheses -Wno-unused-value -qtls

version IBM XL C/C++ for Linux, V13.1.1 (5725-C73, 5765-J08)

version Version: 13.01.0001.0000

version Driver Version: 13.01(C/C++) Level: 140912 ID: _J5rfgDqqEeSrZfWh7nIORA

version C/C++ Front End Version: 01.01(C/C++) Level: 140913 ID: _Kz9 wjuiEeSrZfWh7nIORA
version High-Level Optimizer Version: 13.01(C/C++) and 15.01(Fortran) Level: 140911

ID: _JglehjniEeSrZfWh7nIORA

version Low-Level Optimizer Version: 13.01(C/C++) and 15.01(Fortran) Level: 140912

ID: _J6Z4MjqqEeSrZfWh7nIORA

In the first line, ¢ identifies the source used as C, /opt/ibm/x1C/13.1.1/bin/x1c
shows the invocation command used, and -ghot -gsaveopt shows the compilation
options.

The remaining lines list each compiler component invoked during compilation, and
its version and level. Components that are shared by multiple products may show
more than one version number. Level numbers shown may change depending on
the updates you have installed on your system.

Related information

* [’--version (-qversion)” on page 46|

-gshowpdf
Category

[Optimization and tuning|

Pragma equivalent

None.

Purpose

When used with -qpdfl and a minimum optimization level of -02 at compile and
link steps, creates a PDF map file that contains additional profiling information for

all procedures in your application.

Syntax

showpdf
»— -q—[noshowpdT|

v
A

Defaults
-qshowpdf
Usage

After you run your application with typical data, the profiling information is
recorded into a profile-directed feedback (PDF) file (by default, the file is named
._pdf).

In addition to the PDF file, the compiler also generates a PDF map file that
contains static information during the -qpdfl phase. With these two files, you can
use the showpdf utility to view part of the profiling information of your
application in text. For details of the showpdf utility, see ['Viewing profiling
information with showpdf'|in the XL C/C++ Optimization and Programming Guide.

164 XL C/C++: Compiler Reference for Little Endian Distributions

If you do not need to view the profiling information, specify the -qnoshowpdf
option during the -qpdfl phase so that the PDF map file is not generated. This can
reduce your compile time.

Predefined macros
None.

Related information

* |“-gpdfl, -qpdf2” on page 144|

+ |'Optimizing your applications'|in the XL C/C++ Optimization and Programming
Guide

-gsimd
Category

[Optimization and tuning]|

Pragma equivalent
#pragma nosimd
Purpose

Controls whether the compiler can automatically take advantage of vector
instructions for processors that support them.

These instructions can offer higher performance when used with
algorithmic-intensive tasks such as multimedia applications.

Syntax

auto
»»—-q—simd—= |_noau;| ><
Defaults

Whether -qsimd is specified or not, -qsimd=auto is implied at the -03 or higher
optimization level; -qsimd=noauto is implied at the -02 or lower optimization level.

Usage

The -gqsimd=auto option enables automatic generation of vector instructions for
processors that support them.

The -qsimd=auto option controls the autosimdization, which was performed by the
deprecated -ghot=simd option. If you specify -qghot=simd, the compiler ignores it
and does not issue any warning message.

When -qsimd=auto is in effect, the compiler converts certain operations that are
performed in a loop on successive elements of an array into vector instructions.
These instructions calculate several results at one time, which is faster than
calculating each result sequentially. Applying this option is useful for applications
with significant image processing demands.

Chapter 3. Compiler options reference 165

The -qsimd=noauto option disables the conversion of loop array operations into
vector instructions. Finer control can be achieved by using -qstrict=ieeefp,
-gstrict=operationprecision, and -qstrict=vectorprecision. For details, see
[“-gstrict” on page 170/

Note: Using vector instructions to calculate several results at one time might delay
or even miss detection of floating-point exceptions on some architectures. If
detecting exceptions is important, do not use -qsimd=auto.

Rules

The following rules apply when you use the -qsimd option:

* -gsimd=auto takes effect only when the optimization level is -03 or higher. When
the optimization level is -02 or lower, the compiler ignores -qsimd=auto if it is
specified.

* If you enable IPA and specify -qsimd=auto at the IPA compile step, but specify
-qsimd=noauto at the IPA link step, the compiler automatically sets -qsimd=auto
at the IPA link step. Similarly, if you enable IPA and specify -qsimd=noauto at
the IPA compile step, but specify -qsimd=auto at the IPA link step, the compiler
automatically sets -qsimd=auto at the compile step.

Predefined macros
None.
Example

The following example shows the usage of #pragma nosimd to disable -qsimd=auto
for a specific for loop:

#pragma nosimd

for (i=1; i<1000; i++) {
/* program code */

1

Related information

* |“-mcpu (-garch)” on page 101|

* [“-gstrict” on page 170|

* |Using interprocedural analysis|in the XL C/C++ Optimization and Programming
Guide.

-gsmallstack
Category

[Optimization and tuning]|

Pragma equivalent
None.
Purpose

Reduces the size of the stack frame.

166 XL C/C++: Compiler Reference for Little Endian Distributions

-gspill

Syntax

[nosma1 1 stack—l
»— —q smallstack >«

Defaults

-qnosmallstack

Usage

Programs that allocate large amounts of data to the stack, such as threaded
programs, may result in stack overflows. This option can reduce the size of the

stack frame to help avoid overflows.

This option is only valid when used together with IPA (the -qipa, -04, -05
compiler options).

Specifying this option may adversely affect program performance.
Predefined macros

None.

Examples

To compile myprogram.c to use a small stack frame, enter:
x1c myprogram.c -qipa -gqsmallstack

Related information

* [“-¢” on page 90|

* [“-gipa” on page 129

+ ["-O, -qoptimize” on page 58|

Category

[Compiler customization|

Pragma equivalent
#pragma options [no]spill
Purpose

Specifies the size (in bytes) of the register spill space, the internal program storage
areas used by the optimizer for register spills to storage.

Syntax

A\
A

»»— -g—spill—=—size

Chapter 3. Compiler options reference 167

Defaults
-qspill=512

Parameters

size
An integer representing the number of bytes for the register allocation spill
area.

Usage

If your program is very complex, or if there are too many computations to hold in
registers at one time and your program needs temporary storage, you might need
to increase this area. Do not enlarge the spill area unless the compiler issues a
message requesting a larger spill area. In case of a conflict, the largest spill area
specified is used.

Predefined macros
None.
Examples

If you received a warning message when compiling myprogram.c and want to
compile it specifying a spill area of 900 entries, enter:

x1c myprogram.c -qspill1=900

-gstaticinline (C++ only)
Category

[Language element control|

Pragma equivalent

None.

Purpose

Controls whether inline functions are treated as having static or extern linkage.

When -qnostaticinline is in effect, the compiler treats inline functions as extern:
only one function body is generated for a function marked with the inTine
function specifier, regardless of how many definitions of the same function appear
in different source files. When -gstaticinline is in effect, the compiler treats inline
functions as having static linkage: a separate function body is generated for each
definition in a different source file of the same function marked with the inline
function specifier.

Syntax

[nostati cinl 1'ne—|
»— —q staticinline ><

168 XL C/C++: Compiler Reference for Little Endian Distributions

Defaults
-qnostaticinline
Usage

When -qnostaticinline is in effect, any redundant functions definitions for which
no bodies are generated are discarded by default.

Predefined macros
None.
Examples

Using the -gqstaticinline option causes function f in the following declaration to
be treated as static, even though it is not explicitly declared as such. A separate
function body is created for each definition of the function. Note that this can lead
to a substantial increase in code size.

inline void f() {/*...%/};

-gstdinc, -gnostdinc (-nostdinc, -nostdinc++)
Category

[nput contro

Purpose

Specifies whether the standard include directories are included in the search paths
for system and user header files.

When -gstdinc is in effect, the compiler searches the following directories for
header files:

. The directory specified in the configuration file for the XL C header
files (this is normally /opt/ibm/x1C/13.1.1/include/) or by the -isystem
(-qc_stdinc) option

. The directory specified in the configuration file for the XL C and C++
header files (this is normally /opt/ibm/xIC/13.1.1/include/) or by the -isystem
(-qcpp_stdinc) option

* The directory specified in the configuration file for the system header files or by
the -isystem (-qgcc_c_stdinc or -qgcc_cpp_stdinc) option.

When -nostdinc++ or -noestdinc (-gnostdinc) is in effect, these directories are
excluded from the search paths. The only directories to be searched are:

* directories in which source files containing #include "filename" directives are
located

* directories specified by the -I option
* directories specified by the -include (-qinclude) option

Syntax

»—[-nostdinc++
-nostdincJ

v
A

Chapter 3. Compiler options reference 169

stdinc
»>— -q—[nostdi:|

Y
A

Defaults
-gstdinc

Usage

The search order of header files is described in [“Directory search sequence for]
finclude files” on page 8

This option only affects search paths for header files included with a relative name;
if a full (absolute) path name is specified, this option has no effect on that path
name.

The last valid pragma directive remains in effect until replaced by a subsequent
pragma.

Predefined macros
None.
Examples

To compile myprogram.c so that only the directory /tmp/myfiles (in addition to the
directory containing myprogram.c) is searched for the file included with the
#include "myinc.h" directive, enter:

x1c myprogram.c -nostdinc -I/tmp/myfiles

Related information

+ [“-isystem (-qc_stdinc) (C only)” on page 93|

* [“-isystem (-gcpp_stdinc) (C++ only)” on page 95|

* [“-isystem (-qgcc_c_stdinc) (C only)” on page 96|

+ [“-isystem (-ggcc_cpp_stdinc) (C++ only)” on page 97

* |“-1” on page 56|

s |“Directory search sequence for include files” on page 8|

-gstrict
Category

[Optimization and tuning|

Pragma equivalent
None.
Purpose

Ensures that optimizations done by default at the -03 and higher optimization
levels, and, optionally at -02, do not alter the semantics of a program.

This option is intended for situations where the changes in program execution in
optimized programs produce different results from unoptimized programs.

170 XL C/C++: Compiler Reference for Little Endian Distributions

Note: -gstrict affects the option default changes that are made by the
optimization levels.

Syntax

> —q—Enostrict >«
strict

D

all

—none
—precision
—noprecision
—exceptions
—noexceptions
—ieeefp
—noieeefp
—nans
—nonans
—infinities
—noinfinities
—subnormals
—nosubnormals
—zerosigns
—nozerosigns
—operationprecision—-j
—nooperationprecision—
—vectorprecision
—novectorprecision
—order:
—noorder
—association
—noassociation
—reductionorder
—noreductionorder
—guards

—noguards
—library
—nolibrary

Defaults

e -gstrict or -gstrict=all is always in effect when the -qnoopt or -00
optimization level is in effect

* -gstrict or -gstrict=all is the default when the -02 or -0 optimization level is
in effect

* -gnostrict or -gstrict=none is the default when the -03 or higher optimization
level is in effect

Parameters

The -gstrict suboptions include the following;:

all | none
all disables all semantics-changing transformations, including those controlled
by the ieeefp, order, library, precision, and exceptions suboptions. none
enables these transformations.

Chapter 3. Compiler options reference 171

precision | noprecision
precision disables all transformations that are likely to affect floating-point
precision, including those controlled by the subnormals, operationprecision,
vectorprecision, association, reductionorder, and library suboptions.
noprecision enables these transformations.

exceptions | noexceptions
exceptions disables all transformations likely to affect exceptions or be affected
by them, including those controlled by the nans, infinities, subnormals,
guards, and library suboptions. noexceptions enables these transformations.

ieeefp | noieeefp
ieeefp disables transformations that affect IEEE floating-point compliance,
including those controlled by the nans, infinities, subnormals, zerosigns,
vectorprecision, and operationprecision suboptions. noieeefp enables these
transformations.

nans | nonans
nans disables transformations that may produce incorrect results in the
presence of, or that may incorrectly produce IEEE floating-point NaN
(not-a-number) values. nonans enables these transformations.

infinities | noinfinities
infinities disables transformations that may produce incorrect results in the
presence of, or that may incorrectly produce floating-point infinities.
noinfinities enables these transformations.

subnormals | nosubnormals
subnormals disables transformations that may produce incorrect results in the
presence of, or that may incorrectly produce IEEE floating-point subnormals
(formerly known as denorms). nosubnormals enables these transformations.

zerosigns | nozerosigns
zerosigns disables transformations that may affect or be affected by whether
the sign of a floating-point zero is correct. nozerosigns enables these
transformations.

operationprecision | nooperationprecision
operationprecision disables transformations that produce approximate results
for individual floating-point operations. nooperationprecision enables these
transformations.

vectorprecision | novectorprecision
vectorprecision disables vectorization in loops where it might produce
different results in vectorized iterations than in nonvectorized residue
iterations. vectorprecision ensures that every loop iteration of identical
floating-point operations on identical data produces identical results.

novectorprecision enables vectorization even when different iterations might
produce different results from the same inputs.

order | noorder
order disables all code reordering between multiple operations that may affect
results or exceptions, including those controlled by the association,
reductionorder, and guards suboptions. noorder enables code reordering.

association | noassociation
association disables reordering operations within an expression. noassociation
enables reordering operations.

172 XL C/C++: Compiler Reference for Little Endian Distributions

reductionorder | noreductionorder
reductionorder disables parallelizing floating-point reductions.
noreductionorder enables parallelizing these reductions.

guards | noguards
guards disables moving operations past guards (that is, past if, out of loops, or
past function calls that might end the program or throw an exception) which
control whether the operation should be executed. noguards enables moving
operations past guards.

Tibrary | nolibrary
library disables transformations that affect floating-point library functions; for
example, transformations that replace floating-point library functions with
other library functions or with constants. nolibrary enables these
transformations.

Usage

The all, precision, exceptions, ieeefp, and order suboptions and their negative
forms are group suboptions that affect multiple, individual suboptions. For many
situations, the group suboptions will give sufficient granular control over
transformations. Group suboptions act as if either the positive or the no form of
every suboption of the group is specified. Where necessary, individual suboptions
within a group (like subnormals or operationprecision within the precision
group) provide control of specific transformations within that group.

With -gnostrict or -gstrict=none in effect, the following optimizations are turned

on:

* Code that may cause an exception may be rearranged. The corresponding
exception might happen at a different point in execution or might not occur at
all. (The compiler still tries to minimize such situations.)

* Floating-point operations may not preserve the sign of a zero value. (To make
certain that this sign is preserved, you also need to specify -qfloat=rrm,
-qfloat=nomaf, or -qfloat=strictnmaf.)

* Floating-point expressions may be reassociated. For example, (2.0%3.1)*4.2 might
become 2.0%(3.1*4.2) if that is faster, even though the result might not be
identical.

* The optimization functions enabled by -qfloeat=rsqrt. You can turn off the
optimization functions by using the -gstrict option or -qfleat=norsqrt. With
lower-level or no optimization specified, these optimization functions are turned
off by default.

Specifying various suboptions of -qstrict[=suboptions] or -gnostrict

combinations sets the following suboptions:

* -gstrict or -gstrict=all sets -qfloat=norsqrt:rngchk. -gqnostrict or
-gstrict=none sets -qfloat=rsqrt:norngchk.

e —gstrict=infinities, -qstrict=operationprecision, or -qstrict=exceptions
sets -qfloat=norsqrt.

* -gstrict=noinfinities:nooperationprecision:noexceptions sets -qfloat=rsqrt.

* -gstrict=nans, -gqstrict=infinities, -qstrict=zerosigns, or
-gstrict=exceptions sets -qfloat=rngchk. Specifying all of
-gstrict=nonans:nozerosigns:noexceptions or
-gstrict=noinfinities:nozerosigns:noexceptions, or any group suboptions
that imply all of them, sets -qfloat=norngchk.

Chapter 3. Compiler options reference 173

Note: For details about the relationship between -gqstrict suboptions and their
-qfloat counterparts, see [’-gfloat” on page 118

To override any of these settings, specify the appropriate -qfloat suboptions after
the -gstrict option on the command line.

Predefined macros
None.
Examples

To compile myprogram.c so that the aggressive optimization of -03 are turned off,
and division by the result of a square root is replaced by multiplying by the
reciprocal (-qfloat=rsqrt), enter:

x1c myprogram.c -03 -qstrict -gfloat=rsqrt

To enable all transformations except those affecting precision, specify:
x1c myprogram.c -gstrict=none:precision

To disable all transformations except those involving NaNs and infinities, specify:
x1c myprogram.c -gstrict=all:nonans:noinfinities

Related information

* |"-gsimd” on page 165|

* |"-gfloat” on page 118

+ [“-ghot” on page 122|

+ [“-O, -qoptimize” on page 58|

-gstrict_induction
Category

[Optimization and tuning]

Pragma equivalent

None.

Purpose

Prevents the compiler from performing induction (loop counter) variable

optimizations. These optimizations may be unsafe (may alter the semantics of your
program) when there are integer overflow operations involving the induction

variables.
Syntax
strict_inducti on—|
> —q—Enostrict_induction >
Defaults

* -gstrict_induction
* -gnostrict_induction when -02 or higher optimization level is in effect

174 XL C/C++: Compiler Reference for Little Endian Distributions

Usage

When using -02 or higher optimization, you can specify -qstrict_induction to
prevent optimizations that change the result of a program if truncation or sign
extension of a loop induction variable should occur as a result of variable overflow
or wrap-around. However, use of -qstrict_induction is generally not
recommended because it can cause considerable performance degradation.

Predefined macros
None.

Related information
* |“-O, -qoptimize” on page 58|

-gqtimestamps
Category

[“Output control” on page 29|

Pragma equivalent
none.
Purpose

Controls whether or not implicit time stamps are inserted into an object file.

Syntax
timestamps
> —q—[notimestamps_| >«
Defaults
-qtimestamps
Usage

By default, the compiler inserts an implicit time stamp in an object file when it is
created. In some cases, comparison tools may not process the information in such
binaries properly. Controlling time stamp generation provides a way of avoiding
such problems. To omit the time stamp, use the option -qnotimestamps.

This option does not affect time stamps inserted by pragmas and other explicit
mechanisms.

-gtmplinst (C++ only)
Category

[Template control|

Chapter 3. Compiler options reference 175

Pragma equivalent

None.

Purpose

Manages the implicit instantiation of templates.

Syntax

v
A

»»— -g—tmplinst—= none

Defaults
-qtmplinst=none

Parameters

none
Instructs the compiler to instantiate only inline functions. No other implicit
instantiation is performed.

Predefined macros
None.

Related information
* |'Explicit instantiation'|in the XI. C/C++ Optimization and Programming Guide

-qunwind
Category

[Optimization and tuning]|

Pragma equivalent
None.
Purpose

Specifies whether the call stack can be unwound by code looking through the
saved registers on the stack.

Specifying -qnounwind asserts to the compiler that the stack will not be unwound,
and can improve optimization of nonvolatile register saves and restores.

Syntax

unwind
> -q—[nounwi;| >«

Defaults
-qunwind

176 XL C/C++: Compiler Reference for Little Endian Distributions

Usage

The setjmp and longjmp families of library functions are safe to use with
-gnounwind.

Specifying -qnounwind also implies -qnoeh.
Predefined macros
None.

Related information
+ [“-geh (C++ only)” on page 117]

Category

[Object code controll

Pragma equivalent
None.
Purpose

Produces a nonexecutable output file to use as an input file in another 1d
command call. This file may also contain unresolved symbols.

Syntax

A\
A

»— -r

Defaults
Not applicable.
Usage

A file produced with this flag is expected to be used as an input file in another
compiler invocation or Id command call.

Predefined macros
None.
Examples

To compile myprogram.c and myprog2.c into a single object file mytest.o, enter:

x1c myprogram.c myprog2.c -r -o mytest.o

Category

[Object code control|

Chapter 3. Compiler options reference 177

Pragma equivalent
None.
Purpose

Strips the symbol table, line number information, and relocation information from
the output file.

This command is equivalent to the operating system strip command.
Syntax

»»— -S ><

Defaults

The symbol table, line number information, and relocation information are
included in the output file.

Usage

Specifying -s saves space, but limits the usefulness of traditional debug programs
when you are generating debugging information using options such as -g.

Predefined macros
None.

Related information
* ["-g” on page 90|

-shared (-qmkshrobj)
Category

Pragma equivalent

None.

Purpose

Creates a shared object from generated object files.

Use this option, together with the related options described later in this topic,
instead of calling the linker directly to create a shared object. The advantages of
using this option are the automatic handling of link-time C++ template
instantiation (using either the template include directory or the template registry),

and compatibility with -qipa link-time optimizations (such as those performed at
-05).

178 XL C/C++: Compiler Reference for Little Endian Distributions

Syntax

A\
A

»»—-shared

»»— -g—mkshrobj ><

Defaults

By default, the output object is linked with the runtime libraries and startup
routines to create an executable file.

Usage

The compiler automatically exports all global symbols from the shared object
unless you specify which symbols to export by using the --version-script linker
option. SETMM Symbols that have the hidden or internal visibility attribute are

not exported. EIIE
Specifying -shared (-gmkshrobj) implies -fPIC (-qgpic).

You can also use the following related options with -shared (-qmkshrobj):

-0 shared file
The name of the file that holds the shared file information. The default is a.out.

-e name
Sets the entry name for the shared executable to name.

Note: Options -shared (-gmkshrobj) and -static are incompatible and cannot be
specified together.

For detailed information about using -shared (-qmkshrobj) to create shared
libraries, see |'Constructing a library'|in the XL C/C++ Optimization and
Programming Guide.

Predefined macros
None.
Examples

To construct the shared library big_lib.so from three smaller object files, enter the
following command:

x1c -shared -o big_Tib.so 1ib_a.o 1ib_b.o Tib_c.o

Related information

+ [“-e” on page 69|

* |“-gipa” on page 129

* |"-0” on page 105

+ [“-fPIC (-gpic)” on page 75|
+ [“-gpriority (C++ only)” on page 155|

« [“-fvisibility (-qvisibility)” on page 88|

* [“Supported GCC pragmas” on page 194|
* [“-static (-gstaticlink)” on page 180

Chapter 3. Compiler options reference 179

-static (-gstaticlink)
Category

Pragma equivalent

None.

Purpose

Controls whether static or shared runtime libraries are linked into an application.

Syntax

»—-static
|—-11‘bgcc—|

»»—-shared-1ibgcc ><

[nostati cli nk—l
»— —q staticlink >«

-

Y _—Tibgcc
l—x] 1 1'bs—|

The following table shows the equivalent usage between different format of
options for specifying the linkage of shared and nonshared libraries.

Table 21. Option equivalence mapping

Equivalent option Meaning

-static or -gstaticlink Build a static object and prevent linking
with shared libraries. Every library that
is linked to must be a static library.

-shared-libgcc or -gnostaticlink=libgcc Link with the shared version of libgcc.
-static-libgcc or -gstaticlink=libgcc Link with the static version of libgcc.
Defaults

-gnostaticlink

Parameters

libgcc
* When you specify -shared-Tibgcc, the compiler links the shared version of
libgcc.
* When you specify -static-Tibgcc, the compiler links the static version of
libgcc.

x11ibs

180 XL C/C++: Compiler Reference for Little Endian Distributions

* When you specify x11ibs with -qnostaticlink, the compiler links the shared
version of the XL compiler libraries.

* When you specify x11ibs with -qstaticlink, the compiler links the static
version of the XL compiler libraries.

The x11ibs suboption is available only for the -qstaticlink and

-gqnostaticlink options

Usage

When you specify -static without suboptions, only static libraries are linked with

the object file.

When you specify -qnostaticlink without suboptions, shared libraries are linked

with the object file.

When compiler options are combined, conflicts might occur. The following table
describes the resolutions of the conflicting compiler options.

Table 22. Examples of conflicting compiler options and resolutions

Options combination
examples

Resolution result

Compiler behavior

-gnostaticlink
-static-1ibgcc

Equivalent to
-static-1ibgcc

-gnostaticlink
-gstaticlink=x11ibs

Equivalent to
-gstaticlink=x11ibs

If you first specify -qnostaticlink
without suboptions and then
specify -static or -qstaticlink
with or without suboptions,
-gnostaticlink is overridden. All
libraries are linked statically.

-static-1ibgcc
-gnostaticlink

Equivalent to
-gnostaticlink

If you specify -static with or
without suboptions followed by
-gnostaticlink without
suboptions, -qnostaticlink takes
effect and shared libraries are
linked.

-static -shared-1ibgcc

Equivalent to -static

-static
-gnostaticlink=1ibgcc:x11ib

Equivalent to -static
5

If you specify -static without
suboptions followed by
-shared-1ibgcc or -gnostaticlink
with suboptions, -static takes
effect and only static libraries are
linked with the object file.

-shared-1ibgcc -static

Equivalent to -static

If you first specify -shared-Tibgcc
with suboptions and then specify
-static without suboptions,
-static takes effect and all
libraries are linked statically.

Notes:

* If a runtime library is linked in statically while its message catalog is not
installed on the system, messages are issued with message numbers only, and no

message text is shown.

* If a shared library or a dynamically linked application is supposed to throw or
catch exceptions, you must link it with the shared libgcc by using

-shared-1ibgcc.

Chapter 3. Compiler options reference

181

Predefined macros
None.

Related information
* |“-shared (-qgmkshrobj)” on page 178|

-std (-glanglvl)
Category

[Language element control|

Purpose

Determines whether source code and compiler options should be checked for
conformance to a specific language standard, or subset or superset of a standard.

Syntax
-qlanglvl syntax (C only)

|—extc99—

stdc89
extc89—
stdc99—
extended—
extclx—

\4
A

»»—-g—Ilanglvl—=

-std syntax (C only)

—gnu9x
—gnu99
»»—-std—= c89 ><
—c90
—1509899:1990—
—c99

—C9x
—1509899:1999—
—1509899:199x—
—gnu89———
—gnu90

-qlanglvl syntax (C++ only)

extended—|
»——q—]ang1v1—=—[extended0x ><

-std syntax (C++ only)

gnu++98—|
»»—-std—= c++98 <
I—c++03J

182 XL C/C++: Compiler Reference for Little Endian Distributions

Defaults

. -std=gnu99 or -std=gnu9x

. -std=gnu++98

. The default is set according to the command used to invoke the
compiler:
- -qlanglvl=extc99 for the xlc and related invocation commands
— -qlanglvl=extended for the cc and related invocation commands
— -qlanglvl=stdc89 for the ¢89 and related invocation commands
— -qlanglvl=stdc99 for the ¢99 and related invocation commands

. The default is set according to the command used to invoke the
compiler:

— -glanglvl=extended for the xIC or xlc++ and related invocation commands
Parameters for C language programs

Parameters of the -std option:

c89 | c90 | i1509899:1990
Compilation conforms strictly to the ANSI C89 standard, also known as ISO
C90.

c99 | c9x | 1509899:1999 | i509899:199x
Compilation conforms strictly to the ISO C99 standard, also known as ISO C99.

gnu89 | gnu9e
Compilation conforms to the ANSI C89 standard and accepts
implementation-specific language extensions, also known as GNU C90.

gnu99 | gnu9x
Compilation conforms to the ISO C99 standard and accepts
implementation-specific language extensions, also known as GNU C99.

If you are using some of the C11 features, you must use the -qlanglv1 option.

Parameters of the -qlanglv1 option:

stdc89
Compilation conforms strictly to the ANSI C89 standard, also known as ISO
C90.

extc89
Compilation conforms to the ANSI C89 standard and accepts
implementation-specific language extensions.

stdc99
Compilation conforms strictly to the ISO C99 standard.

extc99
Compilation conforms to the ISO C99 standard and accepts
implementation-specific language extensions.

extended
Provides compatibility with the RT compiler. This language level is based on
C89.

Chapter 3. Compiler options reference 183

extclx
Compilation is based on the C11 standard, invoking all the currently supported
C11 features and other implementation-specific language extensions.

Note: IBM supports selected features of C11, known as C1X before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C11
features is complete, including the support of a new C11 standard library, the
implementation may change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler
interfaces, with earlier releases of IBM's implementation of the C11 features.

Parameters for C++ language programs

Parameters of the -std option:

c++98 | c++03
Compilation conforms strictly to the ISO C++ standard, also known as ISO
C++98.

gnu++98
Compilation is based on the ISO C++ standard, with some differences to
accommodate extended language features.

If you are using some of the C++11 features, you must use the -qlanglv1 option.

Parameters of the -qlanglv1 option:

extended
Compilation is based on the ISO C++ standard, with some differences to
accommodate extended language features.

extendedOx

Compilation is based on the C++11 standard, invoking most of the C++
features and all the currently-supported C++11 features.

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11
features is complete, including the support of a new C++11 standard library,
the implementation might change from release to release. IBM makes no
attempt to maintain compatibility, in source, binary, or listings and other
compiler interfaces, with earlier releases of IBM's implementation of the new
C++11 features.

Predefined macros

See [“Macros related to language levels” on page 217|for a list of macros that are
predefined by -qlanglv1 suboptions.

184 XL C/C++: Compiler Reference for Little Endian Distributions

Category

[Compiler customization|

Pragma equivalent

None.

Purpose

Applies the prefix specified by the -B option to the designated components.

Syntax

»— -t—T—a >
L_b—|
.
C
L d—|
- -
L
L1
L p

Defaults

The default paths for all of the compiler components are defined in the compiler

configuration file.

Parameters

The following table shows the correspondence between

component names:

-t parameters and the

Parameter Description Component name

a The assembler as

b The low-level optimizer xICcode

c, C The C and C++ compiler xlCentry
front end

d The disassembler dis

I (uppercase i) The high-level optimizer, ipa
compile step

L The high-level optimizer, link |ipa
step

1 (lowercase L) The linker 1d

P The preprocessor n/a

Chapter 3. Compiler options reference 185

Usage
Use this option with the -Bprefix option. If -B is specified without the prefix, the
default prefix is /lib/o. If -B is not specified at all, the prefix of the standard

program names is /lib/n.

Note: If you use the p suboption, it can cause the source code to be preprocessed
separately before compilation, which can change the way a program is compiled.

Predefined macros
None.
Examples

To compile myprogram.c so that the name /u/newones/compilers/ is prefixed to the
compiler and assembler program names, enter:

x1c myprogram.c -B/u/newones/compilers/ -tca

Related information
* |[“-B” on page 50|

-v, -V
Category

[Listings, messages, and compiler information|

Pragma equivalent
None.
Purpose

Reports the progress of compilation, by naming the programs being invoked and
the options being specified to each program.

When the -v option is in effect, information is displayed in a comma-separated list.
When the -V option is in effect, information is displayed in a space-separated list.

Syntax

"L

\4
A

Defaults
The compiler does not display the progress of the compilation.
Usage

The -v and -V options are overridden by the -### (-#) option.

186 XL C/C++: Compiler Reference for Little Endian Distributions

Predefined macros
None.
Examples

To compile myprogram.c so you can watch the progress of the compilation and see
messages that describe the progress of the compilation, the programs being
invoked, and the options being specified, enter:

x1c myprogram.c -v

Related information
o |“-### (-#) (pound sign)” on page 43|

Category

[Listings, messages, and compiler information|

Pragma equivalent

None.

Purpose

Suppresses informational, language-level and warning messages.
Syntax

>«
> -W- <

Defaults
All informational and warning messages are reported.
Usage

Informational and warning messages that supply additional information to a
severe error are not disabled by this option.

Predefined macros
None.
Examples

Consider the file myprogram.C.

//The content of file myprogram.C
#include <stdio.h>
int main()
{ char* greet = "hello world";
printf("%d \n", greet);
return 0;

}

Chapter 3. Compiler options reference 187

* If you compile myprogram.C without the -w option, the compiler issues a warning
message.

x1C myprogram.C

Output:
"5:18: warning: format specifies type 'int' but the argument has type 'char *' [-Wformat]
printf("%d \n", greet);

AN
%s

1 warning generated."

* If you compile myprogram.C with the -w option, the warning message is
suppressed.

x1C myprogram.C -w

-Wunsupported-xl-macro
Category

[Error checking and debugging]

Pragma equivalent

None.

Purpose

Checks whether any unsupported XL macro is used.

Syntax

»»—-Wunsupported-x1-macro >«

Defaults
By default, -Wunsupported-x1-macro is not enabled.
Usage

Some macros that might be supported by other XL compilers are unsupported in
IBM XL C/C++ for Linux, V13.1.1.

You can specify the -Wunsupported-x1-macro option to check whether any
unsupported macro is used. If an unsupported macro is used, the compiler issues a
warning message.

Predefined macros

None.

Related information

For the full list of unsupported macros, see [Unsupported macros from other XI|

compilers

188 XL C/C++: Compiler Reference for Little Endian Distributions

-X (-gqsourcetype)
Category

[nput contro

Pragma equivalent
None.
Purpose

Instructs the compiler to treat all recognized source files as a specified source type,
regardless of the actual file name suffix.

Ordinarily, the compiler uses the file name suffix of source files specified on the
command line to determine the type of the source file. For example, a .c suffix
normally implies C source code, and a .C suffix normally implies C++ source code.
The -x option instructs the compiler not to rely on the file name suffix, and to
instead assume a source type as specified by the option.

Syntax
none
»— -X assembler »<
assembler-with-cpp—
C
Ct++:
default
»»— -g—sourcetype—= assembler »<
assembler-with-cpp—
C
c++
Defaults

-X none or -qsourcetype=default

Parameters

assembler
All source files following the option are compiled as if they are assembler
language source files.

assembler-with-cpp
All source files following the option are compiled as if they are assembler
language source files that need preprocessing.

¢ All source files following the option are compiled as if they are C language
source files.

ctHt
All source files following the option are compiled as if they are C++ language
source files. This suboption is equivalent to the -+ option.

Chapter 3. Compiler options reference 189

default (-qsourcetype only)
The programming language of a source file is implied by its file name suffix.

none (-x only)
The programming language of a source file is implied by its file name suffix.

Usage

If you do not use this option, files must have a suffix of .c to be compiled as C
files, and .C (uppercase C), .cc, .cp, .cpp, .CXX, or .c++ to be compiled as C++ files.

Note that the option only affects files that are specified on the command line

following the option, but not those that precede the option. Therefore, in the
following example:

x1c goodbye.C -x c hello.C

hel10.C is compiled as a C source file, but goodbye.C is compiled as a C++ file.
Predefined macros

None.

Related information
* |“-+ (plus sign) (C++ only)” on page 44|

Category

[Floating-point and integer control|

Pragma equivalent
None.
Purpose

Specifies the rounding mode for the compiler to use when evaluating constant
floating-point expressions at compile time.

Syntax

— g
y@ :

Defaults
L] _yn

Parameters

The following suboptions are valid for binary floating-point types only:
m Round toward minus infinity.

n Round to the nearest representable number, ties to even.

190 XL C/C++: Compiler Reference for Little Endian Distributions

p Round toward plus infinity.

z Round toward zero.
Usage

If your program contains operations involving long doubles, the rounding mode
must be set to -yn (round-to-nearest representable number, ties to even).

Predefined macros
None.
Examples

To compile myprogram.c so that constant floating-point expressions are rounded
toward zero at compile time, enter:

x1c myprogram.c -yz

Chapter 3. Compiler options reference 191

192 XL C/C++: Compiler Reference for Little Endian Distributions

Chapter 4. Compiler pragmas reference

The following sections describe the available pragmas:

* [“Pragma directive syntax”]

* [“Scope of pragma directives”]

* [“Supported GCC pragmas” on page 194|

* [“Supported IBM pragmas” on page 194|

Pragma directive syntax

XL C/C++ supports the following forms of pragma directives:

#pragma name
This form uses the following syntax:

A\
A

»»—#—pragma—-—name— (—suboptions—)

The name is the pragma directive name, and the suboptions are any required
or optional suboptions that can be specified for the pragma, where
applicable.

_Pragma ("name")
This form uses the following syntax:

»— Pragma— (—"—"name— (—suboptions—) ") ><

For example, the statement:
_Pragma ("pack(1)")

is equivalent to:
#pragma pack(1)

For all forms of pragma statements, you can specify more than one name and
suboptions in a single #pragma statement.

The name on a pragma is subject to macro substitutions, unless otherwise stated.
The compiler ignores unrecognized pragmas, issuing an informational message
indicating this.

Scope of pragma directives

Many pragma directives can be specified at any point within the source code in a
compilation unit; others must be specified before any other directives or source
code statements. In the individual descriptions for each pragma, the "Usage"
section describes any constraints on the pragma's placement.

In general, if you specify a pragma directive before any code in your source
program, it applies to the entire compilation unit, including any header files that

© Copyright IBM Corp. 1996, 2014 193

are included. For a directive that can appear anywhere in your source code, it
applies from the point at which it is specified, until the end of the compilation
unit.

You can further restrict the scope of a pragma's application by using
complementary pairs of pragma directives around a selected section of code.

Many pragmas provide "pop" or "reset" suboptions that allow you to enable and
disable pragma settings in a stack-based fashion; examples of these are provided in
the relevant pragma descriptions.

Supported GCC pragmas

The following GCC pragmas are supported in IBM XL C/C++ for Linux, V13.1.1.
For details about these pragmas, see the GNU Compiler Collection online
documentation at |http:/ /gcc.gnu.org/onlinedocs /|

 #pragma GCC dependency

+ #pragma GCC diagnostic kind option

* #pragma GCC diagnostic pop

* #pragma GCC diagnostic push

* #pragma GCC error string

* #pragma GCC poison

» #pragma GCC system_header

* #pragma GCC visibility push(visibility)
* #pragma GCC visibility pop

* #pragma GCC warning string

+ #ipragma message string

* #pragma once

* #pragma pop_macro("macro_name"

* #pragma push_macro("macro_name"

* #pragma redefine_extname oldname newname
* #pragma unused

Supported IBM pragmas

This section contains descriptions of individual pragmas available in XL C/C++.

For each pragma, the following information is given:

Category
The functional category to which the pragma belongs is listed here.

Purpose
This section provides a brief description of the effect of the pragma, and
why you might want to use it.

Syntax
This section provides the syntax for the pragma. For convenience, the
#pragma name form of the directive is used in each case. However, it is
perfectly valid to use the alternate C99-style _Pragma operator syntax; see
[“Pragma directive syntax” on page 193 for details.

194 XL C/C++: Compiler Reference for Little Endian Distributions

http://gcc.gnu.org/onlinedocs/

Parameters
This section describes the suboptions that are available for the pragma,
where applicable.

Usage This section describes any rules or usage considerations you should be
aware of when using the pragma. These can include restrictions on the
pragma's applicability, valid placement of the pragma, and so on.

Examples
Where appropriate, examples of pragma directive use are provided in this
section.

#pragma disjoint
Purpose
Lists identifiers that are not aliased to each other within the scope of their use.
By informing the compiler that none of the identifiers listed in the pragma shares
the same physical storage, the pragma provides more opportunity for

optimizations.

Syntax

»»—#pragma disjoint >

v
A

»—(—variable_name——, variable_name)

[] []

Y & Y o

Parameters
variable_name
The name of a variable. It must not refer to any of the following:
* A member of a structure, class, or union
* A structure, union, or enumeration tag
* An enumeration constant
* A typedef name
* A label

Usage
The #pragma disjoint directive asserts that none of the identifiers listed in the
pragma share physical storage; if any the identifiers do actually share physical

storage, the pragma may give incorrect results.

The pragma can appear only in the function or block scope. An identifier in the
directive must be visible at the point in the program where the pragma appears.

You must declare the identifiers before using them in the pragma. Your program
must not dereference a pointer in the identifier list nor use it as a function

Chapter 4. Compiler pragmas reference 195

argument before it appears in the directive.
Examples

The following example shows the use of #pragma disjoint.
int a, b, *ptr_a, *ptr_b;

one_function()

{
#pragma disjoint(*ptr_a, b) /* *ptr_a never points to b */
#pragma disjoint(*ptr_b, a) /* *ptr_b never points to a */

b = 6;
ptr_a = 7; / Assignment will not change the value of b =/

another_function(b); /* Argument "b" has the value 6 =*/

}

External pointer ptr_a does not share storage with and never points to the external
variable b. Consequently, assigning 7 to the object to which ptr_a points will not
change the value of b. Likewise, external pointer ptr_b does not share storage with
and never points to the external variable a. The compiler can assume that the
argument to another_function has the value 6 and will not reload the variable
from memory.

#pragma execution_frequency

Purpose

Marks program source code that you expect will be either very frequently or very
infrequently executed.

When optimization is enabled, the pragma is used as a hint to the optimizer.

Syntax

v
A

»»—#—pragma—execution_frequen cy—(—[very_1 ow—_l—)
very_high

Parameters

very_low
Marks source code that you expect will be executed very infrequently.

very_high
Marks source code that you expect will be executed very frequently.

Usage

Use this pragma in conjunction with an optimization option; if optimization is not
enabled, the pragma has no effect.

The pragma must be placed within block scope, and acts on the closest preceding
point of branching.

196 XL C/C++: Compiler Reference for Little Endian Distributions

Examples

In the following example, the pragma is used in an if statement block to mark
code that is executed infrequently.

int *array = (int *) malloc(10000);

if (array == NULL) {
/* Block A =/
#pragma execution_frequency(very Tow)
error();

}

In the next example, the code block Block B is marked as infrequently executed
and Block C is likely to be chosen during branching.

if (Foo > 0) {
#pragma execution_frequency(very low)
/* Block B */
doSomething();
} else {
/* Block C =/
doAnotherThing();
1

In this example, the pragma is used in a switch statement block to mark code that
is executed frequently.

while (counter > 0) {
#pragma execution_frequency(very_high)
doSomething();

} /* This loop is very likely to be executed. */

switch (a) {
case 1:
doOneThing();
break;
case 2:
#pragma execution_frequency(very_high)
doTwoThings();
break;
default:
doNothing();
} /* The second case is frequently chosen. */

#pragma ibm independent_loop
Purpose

The independent_loop pragma explicitly states that the iterations of the chosen
loop are independent, and that the iterations can be executed in parallel.

Syntax

»»—#—pragma—ibm independent_Tloop |_ _| ><
if exp

where exp represents a scalar expression.

Chapter 4. Compiler pragmas reference 197

Usage

If the iterations of a loop are independent, you can put the pragma before the loop
block. Then the compiler executes these iterations in parallel. When the exp
argument is specified, the loop iterations are considered independent only if exp
evaluates to TRUE at run time.

Notes:

* If the iterations of the chosen loop are dependent, the compiler executes the loop
iterations sequentially no matter whether you specify the independent_loop
pragma.

* To have an effect on a loop, you must put the independent_loop pragma
immediately before this loop. Otherwise, the pragma is ignored.

* If several independent_loop pragmas are specified before a loop, only the last
one takes effect.

 This pragma only takes effect if you specify the -ghot compiler option.
Examples

In the following example, the loop iterations are executed in parallel if the value of
the argument k is larger than 2.
int a[1000], b[1000], c[1000];
int main(int k){
if(k>0){
#pragma ibm independent loop if (k>2)
for(int i=0; i<900; i++){
ali]=b[i]*c[i];

}
}

#pragma nosimd
Purpose

Controls whether the compiler can automatically take advantage of vector
instructions for processors that support them.

Syntax

»»—#—pragma nosimd ><

Example

The following example shows the usage of #pragma nosimd to disable -qsimd=auto
for a specific for loop:

#pragma nosimd
for (i=1; i<1000; i++)
{

}

Related reference:

/* program code */

[“-gsimd” on page 165

198 XL C/C++: Compiler Reference for Little Endian Distributions

#pragma option_override
Purpose

Allows you to specify optimization options at the subprogram level that override
optimization options given on the command line.

This enables finer control of program optimization, and can help debug errors that
occur only under optimization.

Syntax

»»—#—pragma—option_override >

»—(—identifier—,—"—opt—(—1level—, 0) —"—)—) ><
B

Parameters

identifier

The name of a function for which optimization options are to be overridden.

The following table shows the equivalent command line option for each pragma

suboption.

#pragma option_override value Equivalent compiler option
level, 0 Ne !

level, 2 o).l

level, 3 ek

Notes:

1. If optimization level -03 or higher is specified on the command line, #pragma
option_override(identifier, "opt(level, 0)") or #pragma
option_override(identifier, "opt(level, 2)") does not turn off the
implication of the -ghot and -qipa options.

2. Specifying -03 implies -ghot=1evel1=0. However, specifying #pragma
option_override(identifier, "opt(level, 3)") in source code does not imply
-ghot=1evel=0.

Defaults

See the descriptions for the options listed in the table above for default settings.
Usage

The pragma takes effect only if optimization is already enabled by a command-line
option. You can only specify an optimization level in the pragma lower than the
level applied to the rest of the program being compiled.

The #pragma option_override directive only affects functions that are defined in

the same compilation unit. The pragma directive can appear anywhere in the
translation unit. That is, it can appear before or after the function definition, before

Chapter 4. Compiler pragmas reference 199

or after the function declaration, before or after the function has been referenced,
and inside or outside the function definition.

This pragma cannot be used with overloaded member functions.
Examples

Suppose you compile the following code fragment containing the functions foo
and faa using -02. Since it contains the #pragma option_override(faa,
"opt(level, 0)"), function faa will not be optimized.

foo(){

}
#pragma option_override(faa, "opt(level, 0)")
faa(){

}
Related information

* ["-O, -qoptimize” on page 58|
* |“-gstrict” on page 170|

#pragma pack
Purpose

Sets the alignment of all aggregate members to a specified byte boundary.

If the byte boundary number is smaller than the natural alignment of a member,
padding bytes are removed, thereby reducing the overall structure or union size.

Syntax
»»—#—pragma—pack—() ><
number
push
l—,—number—|
pop
Defaults

Members of aggregates (structures, unions, and classes) are aligned on their natural
boundaries and a structure ends on its natural boundary. The alignment of an
aggregate is that of its strictest member (the member with the largest alignment
requirement).

Parameters

number
is one of the following:

1 Aligns structure members on 1-byte boundaries, or on their natural
alignment boundary, whichever is less.

200 XL C/C++: Compiler Reference for Little Endian Distributions

2 Aligns structure members on 2-byte boundaries, or on their natural
alignment boundary, whichever is less.

4 Aligns structure members on 4-byte boundaries, or on their natural
alignment boundary, whichever is less.

8 Aligns structure members on 8-byte boundaries, or on their natural
alignment boundary, whichever is less.

16 Aligns structure members on 16-byte boundaries, or on their natural
alignment boundary, whichever is less.

push
When specified without a number, pushes whatever value is currently in effect
to the top of the packing "stack". When used with a number, pushes that value
to the top of the packing stack, and sets the packing value to that of number for
structures that follow.

pop
Removes the previous value added with #pragma pack. Specifying #pragma
pack() with no parameters is equivalent to pop.

Usage

The #pragma pack directive applies to the definition of an aggregate type, rather
than to the declaration of an instance of that type; it therefore automatically applies
to all variables declared of the specified type.

The #pragma pack directive modifies the current alignment rule for only the
members of structures whose declarations follow the directive. It does not affect
the alignment of the structure directly, but by affecting the alignment of the
members of the structure, it may affect the alignment of the overall structure.

The #pragma pack directive cannot increase the alignment of a member, but rather
can decrease the alignment. For example, for a member with data type of short, a
#pragma pack(1) directive would cause that member to be packed in the structure
on a 1-byte boundary, while a #pragma pack(4) directive would have no effect.

The #pragma pack directive causes bit fields to cross bit field container boundaries.

#pragma pack(2)
struct A{

int a:31;

int b:2;

1x;

int main(){
printf("size of struct A = %lu\n", sizeof(x));

}

When compiled and run, the output is:
size of struct A =6

But if you remove the #pragma pack directive, you get this output:
size of struct A = 8

The #pragma pack directive applies only to complete declarations of structures or
unions; this excludes forward declarations, in which member lists are not specified.
For example, in the following code fragment, the alignment for struct S is 4, since
this is the rule in effect when the member list is declared:

Chapter 4. Compiler pragmas reference 201

#pragma pack(1)

struct S;

#pragma pack(4)

struct S { int i, j, k; };

A nested structure has the alignment that precedes its declaration, not the
alignment of the structure in which it is contained, as shown in the following
example:

#pragma pack (4) // 4-byte alignment
struct nested {
int x;
char y;
int z;
}s
#pragma pack(1) // 1-byte alignment
struct packedcxx{
char a;
short b;
struct nested sl; // 4-byte alignment

}s

If more than one #pragma pack directive appears in a structure defined in an
inlined function, the #pragma pack directive in effect at the beginning of the
structure takes precedence.

Examples

The following example shows how the #pragma pack directive can be used to set
the alignment of a structure definition:

// header file file.h
#pragma pack(1)

struct jeff{ //
short bill; //
int *chris;
1
#pragma pack(pop) //
// source file anyfile.c

this structure is packed
along 1-byte boundaries

reset to previous alignment rule

#include "file.h"

struct jeff j; // uses the alignment specified
// by the pragma pack directive
// in the header file and is
// packed along 1-byte boundaries

This example shows how a #pragma pack directive can affect the size and
mapping of a structure:

struct s_t {
char aj;
int b;
short c;
int d;
1S3

Default mapping:
size of s_t =16

offset of a =0

202 XL C/C++: Compiler Reference for Little Endian Distributions

With #pragma pack(1):
sizeof s_t =11

offset of a = 0

Default mapping:
offset of b = 4
offset of c = 8
offset of d = 12
alignment of a = 1
alignment of b = 4
alignment of ¢ = 2

alignment of d = 4

The following example defines a union uu containing a structure as one of its

With #pragma pack(1):

offset of b =1
offset of c =5
offsetof d =7
alignment of a = 1
alignment of b = 1
alignment of ¢ = 1

alignment of d = 1

members, and declares an array of 2 unions of type uu:

union uu
short
struct
char
char
char
} b;
}s

union uu

{

a;
{
X3
ys
z;

nonpacked[2];

Since the largest alignment requirement among the union members is that of short
a, namely, 2 bytes, one byte of padding is added at the end of each union in the
array to enforce this requirement:

nonpacked[0]

nonpacked[1]

The next example uses #pragma pack(1) to set the alignment of unions of type uu

to 1 byte:

#pragma pack(1)

union uu
short
struct
char
char
char
} b
1

union uu

{

a;

pack_array[2];

Now, each union in the array packed has a length of only 3 bytes, as opposed to
the 4 bytes of the previous case:

packed[0] packed[1]
a a
x |y z x |y z
< | | | I | |
0 1 2 3 4 5 6

Chapter 4. Compiler pragmas reference

203

Related information
» |“-fpack-struct (-qalign)” on page 76|

* ['Using alignment modifiers'|in the XL C/C++ Optimization and Programming
Guide

#pragma reachable
Purpose

Informs the compiler that the point in the program after a named function can be
the target of a branch from some unknown location.

By informing the compiler that the instruction after the specified function can be
reached from a point in your program other than the return statement in the
named function, the pragma allows for additional opportunities for optimization.
Note: The compiler automatically inserts #pragma reachable directives for the
setjmp family of functions (setjmp, _setjmp, sigsetjmp, and _sigsetjmp) when you

include the setjmp.h header file.

Syntax

H)

v

»»—#—pragma—reachable—(-function_name) ><

Parameters

function_name
The name of a function preceding the instruction which is reachable from a
point in the program other than the function's return statement.

Defaults

Not applicable.

#pragma simd_level
Purpose

Controls the compiler code generation of vector instructions for individual loops.

Vector instructions can offer high performance when used with
algorithmic-intensive tasks such as multimedia applications. You have the
flexibility to control the aggressiveness of autosimdization on a loop-by-loop basis,
and might be able to achieve further performance gain with this fine grain control.

The supported levels are from 0 to 10. level(0) indicates performing no
autosimdization on the loop that follows the pragma directive. level(10) indicates
performing the most aggressive form of autosimdization on the loop. With this
pragma directive, you can control the autosimdization behavior on a loop-by-loop
basis.

204 XL C/C++: Compiler Reference for Little Endian Distributions

Syntax

A\
A

»»—#—pragma—simd_level—(—n—)

Parameters

n A scalar integer initialization expression, from 0 to 10, specifying the
aggressiveness of autosimdization on the loop that follows the pragma
directive.

Usage

A loop with no simd_level pragma is set to simd level 5 by default, if -qsimd=auto
is in effect.

#pragma simd_level(0) is equivalent to #pragma nosimd, where autosimdization is
not performed on the loop that follows the pragma directive.

#pragma simd_level(10) instructs the compiler to perform autosimdization on the
loop that follows the pragma directive most aggressively, including bypassing cost
analysis.

Rules

The rules of #pragma simd_level directive are listed as follows:

* The #pragma simd_level directive has effect only for architectures that support
vector instructions and when used with -qsimd=auto.

* The #pragma simd_level directive applies only to the loop immediately
following it. The directive has no effect on other loops that are nested within the
specified loop. It is possible to set different simd levels for the inner and outer
loops by specifying separate #pragma simd_level directives.

Examples

#pragma simd_level(10)
for (i=1; i<1000; i++) {
/* program code */

b

#pragma STDC CX_LIMITED_RANGE
Purpose

Instructs the compiler that complex division and absolute value are only invoked
with values such that intermediate calculation will not overflow or lose

significance.

Syntax
off

»>—#—pragma—STDC cx_1imi ted_range{on ><
default—

Chapter 4. Compiler pragmas reference 205

Usage

Using values outside the limited range may generate wrong results, where the
limited range is defined such that the "obvious symbolic definition" will not
overflow or run out of precision.

The pragma is effective from its first occurrence until another cx_limited_range
pragma is encountered, or until the end of the translation unit. When the pragma
occurs inside a compound statement (including within a nested compound
statement), it is effective from its first occurrence until another cx_limited_range
pragma is encountered, or until the end of the compound statement.

Examples

The following example shows the use of the pragma for complex division:
#include <complex.h>

_Complex double a, b, c, d;
void p() {

d = b/c;

{

#pragma STDC CX_LIMITED_RANGE ON
a=b/c;

}
}

The following example shows the use of the pragma for complex absolute value:
#include <complex.h>

_Complex double cd = 10.10 + 10.10+%I;
int p() {

#pragma STDC CX_LIMITED_RANGE ON

double d = cabs(cd);
}

#pragma unroll, #pragma nounroll
Purpose

Controls loop unrolling, for improved performance.

Syntax
»—#—pragma—EnounrM 1 ><
unroll
(—n—)
Parameters

n Instructs the compiler to unroll loops by a factor of n. In other words, the body

206 XL C/C++: Compiler Reference for Little Endian Distributions

of a loop is replicated to create n copies (including the original) and the
number of iterations is reduced by a factor of 1/n. The value of n must be a
positive integer.

Specifying #pragma unroll(1) disables loop unrolling, and is equivalent to
specifying #pragma nounroll.

Usage
Only one pragma can be specified on a loop.

The pragma affects only the loop that follows it. An inner nested loop requires a
#pragma unroll directive to precede it if the wanted loop unrolling strategy is
different from that of the -funrol1-Toops (-qunroll) option.

The #pragma unroll and #pragma nounroll directives can only be used on for
loops. They cannot be applied to do while and while loops.

The loop structure must meet the following conditions:

* There must be only one loop counter variable, one increment point for that
variable, and one termination variable. These cannot be altered at any point in
the loop nest.

* Loops cannot have multiple entry and exit points. The loop termination must be
the only means to exit the loop.

* Dependencies in the loop must not be "backwards-looking". For example, a
statement such as A[i][j] = A[i -1][j + 1] + 4 must not appear within the
loop.

Examples

In the following example, the #pragma unroll(3) directive on the first for loop
requires the compiler to replicate the body of the loop three times. The #pragma
unroll on the second for loop allows the compiler to decide whether to perform
unrolling.

#pragma unrol1(3)
for(i=0;i < n; i++)

a[i] = b[i] * c[i];

#pragma unroll
for(j=0;j < n; j++)

alil = b3l = c[ils
}

In this example, the first #pragma unroll(3) directive results in:
=03
if (i>n-2) goto remainder;
for (5 i<n-2; i+=3) {
alil=b[i] c[i];
a[i+1]=b[i+1] = c[i+1];
a[i+2]=b[i+2] * c[i+2];

1
if (i<n) {
remainder:

Chapter 4. Compiler pragmas reference 207

for (; i<n; i++) {
al[i]=b[i] * c[i];
}
}

Related reference:

[“~funroll-loops (-qunroll), -funroll-all-loops (-qunroll=yes)” on page 87

#pragma weak
Purpose

Prevents the linker from issuing error messages if it encounters a symbol
multiply-defined during linking, or if it does not find a definition for a symbol.

The pragma can be used to allow a program to call a user-defined function that
has the same name as a library function. By marking the library function definition
as "weak", the programmer can reference a "strong" version of the function and
cause the linker to accept multiple definitions of a global symbol in the object
code. While this pragma is intended for use primarily with functions, it will also
work for most data objects.

Syntax

»»>—#—pragma—weak—namel |_ ><
=—name2—|

Parameters

namel
A name of a data object or function with external linkage.

name2
A name of a data object or function with external linkage.

name2 must not be a member function. If name2 is a template
function, you must explicitly instantiate the template function.

Names must be specified using their mangled names. To obtain C++
mangled names, compile your source to object files only, using the -¢ compiler
option, and use the nm operating system command on the resulting object file.

Usage

There are two forms of the weak pragma:

#pragma weak namel
This form of the pragma marks the definition of the namel as "weak" in a
given compilation unit. If namel is referenced from anywhere in the
program, the linker will use the "strong" version of the definition (that is,
the definition not marked with #pragma weak), if there is one. If there is
no strong definition, the linker will use the weak definition; if there are
multiple weak definitions, it is unspecified which weak definition the
linker will select (typically, it uses the definition found in the first object
file specified on the command line during the link step). namel must be
defined in the same compilation unit as #pragma weak. If namel is
referenced, but no definition of it can be found, it is assigned a value of 0.

208 XL C/C++: Compiler Reference for Little Endian Distributions

#pragma weak namel=name?2
This form of the pragma creates a weak definition of the namel for a given
compilation unit, and an alias for name2. If namel is referenced from
anywhere in the program, the linker will use the "strong" version of the
definition (that is, the definition not marked with #pragma weak), if there
is one. If there is no strong definition, the linker will use the weak
definition, which resolves to the definition of name2. If there are multiple
weak definitions, it is unspecified which weak definition the linker will
select (typically, it uses the definition found in the first object file specified
on the command line during the link step).

name2 must be defined in the same compilation unit as #pragma weak.
namel may or may not be declared in the same compilation unit as the
#pragma weak, but must never be defined in the compilation unit. If
namel is declared in the compilation unit, namel's declaration must be
compatible to that of name2. For example, if name2 is a function, namel
must have the same return and argument types as name?2.

This pragma should not be used with uninitialized global data, or with shared
library data objects that are exported to executables.

Examples

The following is an example of the #pragma weak namel form:
// Compilation unit 1:

#include <stdio.h>
void foo();

int main()

{
}

// Compilation unit 2:

foo();

#include <stdio.h>

#if __cplusplus
#pragma weak _Z3foov
#else

#pragma weak foo
#endif

void foo()

{

}

// Compilation unit 3:

printf("Foo called from compilation unit 2\n");

#include <stdio.h>

void foo()
{

printf("Foo called from compilation unit 3\n");

If all three compilation units are compiled and linked together, the linker will use
the strong definition of foo in compilation unit 3 for the call to foo in compilation
unit 1, and the output will be:

Chapter 4. Compiler pragmas reference 209

Foo called from compilation unit 3

If only compilation unit 1 and 2 are compiled and linked together, the linker will
use the weak definition of foo in compilation unit 2, and the output will be:

Foo called from compilation unit 2

The following is an example of the #pragma weak namel=name2 form:
// Compilation unit 1:

#include <stdio.h>
void foo();

int main()

{
foo();

}

// Compilation unit 2:
#include <stdio.h>
void foo(); // optional

#if __cplusplus

#pragma weak _Z3foov = Z4foo2v
#else#pragma weak foo = foo2
#endif

void foo2()

{
printf("Hello from foo2!\n");
1

// Compilation unit 3:
#include <stdio.h>
void foo()

{
printf("Hello from foo!\n");
1

If all three compilation units are compiled and linked together, the linker will use
the strong definition of foo in compilation unit 3 for the call to foo from
compilation unit 1, and the output will be:

Hello from foo!

If only compilation unit 1 and 2 are compiled and linked together, the linker will
use the weak definition of foo in compilation unit 2, which is an alias for foo2, and
the output will be:

Hello from foo2!

Related information
* ['The weak variable attribute'|in the XL C/C++ Language Reference
* ['The weak function attribute'|in the XL C/C++ Language Reference

210 XL C/C++: Compiler Reference for Little Endian Distributions

Chapter 5. Compiler predefined macros

Predefined macros can be used to conditionally compile code for specific
compilers, specific versions of compilers, specific environments, and specific

language features.

Predefined macros fall into several categories:

+ [“General macros”)

* [“Macros related to the platform” on page 213

* [“Macros related to compiler features” on page 214|

General macros

The following predefined macros are always predefined by the compiler. Unless
noted otherwise, all the following macros are protected, which means that the
compiler will issue a warning if you try to undefine or redefine them.

Table 23. General predefined macros

Predefined macro
name

Description

Predefined value

_ BASE _FILE_ Indicates the name of the primary source file. The fully qualified file name of the
primary source file.
__DATE__ Indicates the date that the source file was A character string containing the date
preprocessed. when the source file was
preprocessed.
_FILE__ Indicates the name of the preprocessed source file. | A character string containing the
name of the preprocessed source file.
_ FUNCTION__ Indicates the name of the function currently being | A character string containing the
compiled. name of the function currently being
compiled.
_LINE__ Indicates the current line number in the source file. |An integer constant containing the
line number in the source file.
_ SIZE TYPE__ Indicates the underlying type of size_t on the unsigned Tong
current platform. Not protected.
__TIME__ Indicates the time that the source file was A character string containing the time

preprocessed.

when the source file was
preprocessed.

© Copyright IBM Corp. 1996, 2014

211

Table 23. General predefined macros (continued)

Predefined macro
name

Description

Predefined value

_ TIMESTAMP__

Indicates the date and time when the source file was
last modified. The value changes as the compiler
processes any include files that are part of your
source program.

A character string literal in the form
"Day Mmm dd hh:mm:ss yyyy", where:

Day Represents the day of the
week (Mon, Tue, Wed, Thu, Fri,
Sat, or Sun).

Mmm Represents the month in an
abbreviated form (Jan, Feb,
Mar, Apr, May, Jun, Jul, Aug,
Sep, Oct, Nov, or Dec).

dad Represents the day. If the
day is less than 10, the first d
is a blank character.

hh Represents the hour.
mm Represents the minutes.
ss Represents the seconds.

yyyy Represents the year.

Macros indicating the XL C/C++ compiler

Macros related to the XL C/C++ compiler are always predefined, and they are
protected, which means that the compiler will issue a warning if you try to
undefine or redefine them. You can use the -dM (-qshowmacros) -E compiler
options to view the values of the predefined macros.

Table 24. Compiler-related predefined macros

Predefined macro
name Description

Predefined value

__ibmxl__ Indicates the XL C/C++
compiler is being used.

1

__ibmxl_vrm__ Indicates the VRM level
of the XL C/C++
compiler using a single
integer for sorting

A hexadecimal integer whose value is
as follows:

(((__ibmx1_version_) << 24) | \
((__ibmx1_release) << 16) | \

purposes. ((__ibmx1_modification_) << 8) \
)

__ibmxl_version__ Indicates the version An integer that represents the version
number of the XL C/C++ | number.
compiler.

__ibmxl_release___ Indicates the release An integer that represents the release
number of the XL C/C++ | number.
compiler.

__ibmxl_modification__ | Indicates the
modification number of
the XL C/C++ compiler.

An integer that represents the
modification number.

__ibmxl_ptf_fix_level _ |Indicates the PTF fix
level of the XL C/C++
compiler.

An integer that represents the fix
number.

212 XL C/C++: Compiler Reference for Little Endian Distributions

Table 24. Compiler-related predefined macros (continued)

Predefined macro

number of the Clang
compiler.

name Description Predefined value

_llvm__ Indicates that an LLVM |1
backend is used.

_clang Indicates that Clang 1
compiler is used.

__clang_major__ Indicates the major 3
version number of the
Clang compiler.

__clang minor__ Indicates the minor 4
version number of the
Clang compiler.

__clang_patchlevel Indicates the patch level |0

__clang_version__

Indicates the full version
of the Clang compiler.

3.4 (tags/RELEASE_34/final)

Macros related to the platform

The following predefined macros are provided to facilitate porting applications
between platforms. All platform-related predefined macros are unprotected and
can be undefined or redefined without warning unless otherwise specified.

Table 25. Platform-related predefined macros

Predefined macro name

Description

Predefined value

Predefined under the
following conditions

_ELF__ Indicates that the ELF object 1 Always predefined for
model is in effect. the Linux platform.

GXX WEAK Indicates that weak symbols 1 Always predefined.

- o are supported (used for
template instantiation by the
linker).

__HOS_LINUX__ Indicates that the host 1 Always predefined for
operating system is Linux. all Linux platforms.
Protected.

__linux, __linux__, linux, __gnu_linux__ |Indicates that the platformis |1 Always predefined for
Linux. all Linux platforms.

_LITTLE_ENDIAN, Indicates that the platform is |1 Always predefined.

_ LITTLE_ENDIAN_ little-endian (that is, the most
significant byte is stored at the
memory location with the
highest address).

_LP64, _1P64__ Indicates that the target 1 Predefined when the
platform uses 64-bit Tong int target platform uses
and pointer types, and a 32-bit 64-bit Tong int and
int type. pointer types, and

32-bit a int type.

_ POWERPC__ Indicates that the target is a 1 Predefined when the

Power architecture.

target is a Power
architecture.

Chapter 5. Compiler predefined macros

213

Table 25. Platform-relate

d predefined macros (continued)

Predefined under the
Predefined macro name Description Predefined value | following conditions
__PPC__ Indicates that the target is a 1 Predefined when the
Power architecture. target is a Power
architecture.
__PPCeé4__ Indicates that the target is a 1 Always predefined.
Power architecture and that
64-bit compilation mode is
enabled.
__ THW_PPC__ Indicates that the target is a 1 Predefined when the
Power architecture. target is a Power
architecture.
__TOS_LINUX__ Indicates that the target 1 Predefined when the
operating system is Linux. target OS is a Linux.
__unix, __unix__, unix Indicates that the operating 1 Always predefined.
system is a variety of UNIX.

Macros related

to compiler features

Feature-related macros are predefined according to the setting of specific compiler
options or pragmas. Unless noted otherwise, all feature-related macros are
protected, which means that the compiler will issue a warning if you try to
undefine or redefine them.

Feature-related macros are discussed in the following sections:

+ [“Macros related to compiler option settings”]|

+ [“Macros related to architecture settings” on page 216|

* [“Macros related to language levels” on page 217|

Macros related to compiler option settings

The following macros can be tested for various features, including source input
characteristics, output file characteristics, and optimization. All of these macros are
predefined by a specific compiler option or suboption, or any invocation or
pragma that implies that suboption. If the suboption enabling the feature is not in
effect, then the macro is undefined.

Table 26. General option-related predefined macros

Predefined macro name

Predefined when the
following compiler option
or equivalent pragma is in

Description Predefined value

effect
__64BIT__ Indicates that 64-bit |1 Always predefined.
compilation mode is
in effect.
__ALTIVEC__ Indicates support 1 [maltivec (-qaltivec)|

for vector data
types. (unprotected)

_CHAR_SIGNED,
_ CHAR_SIGNED__

-fsioned-cha
-gchars=signed

Indicates that the
default character
type is signed char.

214 XL C/C++: Compiler Reference for Little Endian Distributions

Table 26. General option-related predefined macros (continued)

Predefined macro name

Description

Predefined value

Predefined when the
following compiler option
or equivalent pragma is in
effect

_CHAR_UNSIGNED,
_ CHAR_UNSIGNED__

Indicates that the
default character
type is unsigned

char.

-Hfunsigned-cha
-gchars=unsigned

C++ __EXCEPTIONS

Indicates that C++
exception handling
is enabled.

Faet]

_ GXX_RTTI

Indicates that
runtime type
identification (RTTI)
information is
enabled.

Fqrtti, -fno-rtti (-qnortti)|

C++ __IGNERRNO__

Indicates that
system calls do not
modify errno,
thereby enabling
certain compiler
optimizations.

qignerrnoj

C++ __INITAUTO__

Indicates the value
to which automatic
variables which are
not explicitly
initialized in the
source program are
to be initialized.

The two-digit hexadecimal value

specified in the

compiler option.

-qinitauto=hex value

C++ __INITAUTO_W__

Indicates the value
to which automatic
variables which are
not explicitly
initialized in the
source program are
to be initialized.

An eight-digit hexadecimal
corresponding to the value
specified in the -qinitauto

compiler option repeated 4 times.

-qinitauto=hex value

C++ _ LIBANSI__

Indicates that calls
to functions whose
names match those
in the C Standard
Library are in fact
the C library
functions, enabling
certain compiler
optimizations.

_ LONGDOUBLE128,
_ LONG_DOUBLE_128__

Indicates that the
size of a Tong
double type is 128
bits.

Always predefined.

__OPTIMIZE__

Indicates the level of
optimization in
effect.

-03

-04 | -O5

_ OPTIMIZE_SIZE__

Indicates that
optimization for
code size is in effect.

-O1-021-031-041-05
and Focompact

__ RTTI_ALL__

Indicates that
runtime type
identification (RTTI)
information for all
operators is enabled.

Chapter 5. Compiler predefined macros 215

Table 26. General option-related predefined macros (continued)

_ RTTI_TYPE_INFO__

runtime type
identification (RTTI)
information for the
typeid operator is
generated.

Predefined macro name Description Predefined value Predefined when the
following compiler option
or equivalent pragma is in
effect

228 RTTI_DYNAMIC CAsT | Indicates that 1
runtime type
identification (RTTI)
information for the
dynamic_cast
operator is
generated.
Ct++ Indicates that 1

__NO_RTTIL__

Indicates that 1
runtime type
identification (RTTI)
information is

fno-rtti (-gnortti

element order used
in vector registers.
in effect, or to

__ORDER_LITTLE_ENDIAN__
when -qaltivec=le (-maltivec) is

__ORDER_BIG_ENDIAN__ when
-qaltivec=be is in effect.

disabled.

__VEC__ Indicates support 10206 Imaltivec (-galtivec)|
for vector data
types.

__VEC_ELEMENT_REG_ORDER__ Indicates the vector | Defined to [maltivec (-qaltivec)|

Macros related to architecture settings

The following macros can be tested for target architecture settings. All of these
macros are predefined to a value of 1 by a -mcpu compiler option setting, or any
other compiler option that implies that setting. If the -mcpu suboption enabling the
feature is not in effect, then the macro is undefined.

Table 27. -mcpu-related macros

Macro name

Description

Predefined by the following -mcpu
suboptions

to run on POWERS+ or higher
processors.

_ARCH_PPC Indicates that the application is targeted |Defined for all -mcpu suboptions except
to run on any Power processor. auto.

_ARCH_PPC64 Indicates that the application is targeted |pwr8
to run on Power processors with 64-bit
support.

_ARCH_PPCGR Indicates that the application is targeted |pwr8
to run on Power processors with
graphics support.

_ARCH_PWR4 Indicates that the application is targeted |pwr8
to run on POWER4 or higher processors.

_ARCH_PWR5 Indicates that the application is targeted |pwr8
to run on POWERS or higher processors.

_ARCH_PWR5X Indicates that the application is targeted |pwr8

216 XL C/C++: Compiler Reference for Little Endian Distributions

Table 27. -mcpu-related macros (continued)

Predefined by the following -mcpu

Macro name Description suboptions
_ARCH_PWR6 Indicates that the application is targeted |pwr8

to run on POWERG6® or higher

processors.
_ARCH_PWR7 Indicates that the application is targeted |pwr8

™

to run on POWER7® , POWER7+"" or
higher processors.

_ARCH_PWRS Indicates that the application is targeted |pwr8
to run on POWERS processors.

Related information
* |“-mcpu (-garch)” on page 101|

Macros related to language levels
The following macros are predefined to a value of 1 by a specific language level,
represented by a suboption of the compiler option, or any
invocation or pragma that implies that suboption. If the suboption enabling the
feature is not in effect, then the macro is undefined. For descriptions of the features
related to these macros, see the XL C/C++ Language Reference.

Table 28. Predefined macros for language features

Predefined macro name Description Predefined when the following
language level is in effect
C++ BOOL Indicates that the bool Always defined.
o o keyword is accepted.
C++ cplusplus The numeric value that -std (-qlanglvl)
o indicates the supported
language standard as
defined by that specific
standard.
_STDC__ Indicates that the compiler Predefined to 1 if
conforms to the ANSI/ISO ANSI/ISO C standard
C standard. conformance is in effect.
Explicitly defined to
0.
__ STDC_HOSTED__ Indicates that the
implementation is a hosted extclx | stdc99 |
implementation of the extc99
ANSI/ISO C standard.
(That is, the hosted extendedOx
environment has all the
facilities of the standard C
available).
STDC VERSION Indicates the version of The format is yyyymmL. (For
- - - ANSI/ISO C standard example, the format is 199901L
which the compiler for C99.)
conforms to.

Chapter 5. Compiler predefined macros 217

Unsupported macros from other XL compilers

The following macros that might be supported by other XL compilers are
unsupported in IBM XL C/C++ for Linux, V13.1.1. You can specify the
-Wunsupported-x1-macro option to check whether any unsupported macro is used;
if an unsupported macro is used, the compiler issues a warning message.

You might want to edit your source code to remove references of the unsupported
macros during compiler migration.

Table 29. Unsupported macros indicating the XL C/C++ compiler product

__IBMC__ _ xle__
_ IBMCPP__ _xIC__
_ xIC_ver__

Table 30. Unsupported macros that are related to the platform

_BIG_ENDIAN, _ BIG_ENDIAN__
_ILP32, __ILP32__

__THW_370__

_ THW_BIG_ENDIAN__

Table 31. Unsupported macros related to compiler option settings

_ LONGDOUBLE64
_ IBM_GCC_ASM
_ IBM_STDCPP_ASM

_ TEMPINC__

Table 32. Unsupported macros related to architecture settings

_ARCH_PWR6E

218 XL C/C++: Compiler Reference for Little Endian Distributions

Table 33. Unsupported macros related to language levels

_C99_BOOL __IBM_DOLLAR_IN_ID

_ C99_COMPLEX _ IBM_EXTENSION_KEYWORD

_ C99_COMPOUND_LITERAL __IBM_GCC__INLINE__

_ C99_CPLUSCMT __IBM_GENERALIZED_LVALUE

__C99_DESIGNATED_INITIALIZER __IBM_INCLUDE_NEXT

_ C99_DUP_TYPE_QUALIFIER _ IBM_LABEL_VALUE

_ C99_EMPTY_MACRO_ARGUMENTS _IBM_LOCAL_LABEL

_ C99_FLEXIBLE_ARRAY_MEMBER __ IBM_MACRO_WITH_VA_ARGS

_ C99_FUNC__ __IBM_NESTED_FUNCTION

_ C99_HEX_FLOAT_CONST __IBM_PP_PREDICATE

__C99_INLINE _ IBM_PP_WARNING

_ C99_LLONG __IBM_REGISTER_VARS

_ C99_MACRO_WITH_VA_ARGS __IBM__TYPEOF__

_ C99_MAX_LINE_NUMBER __IBMC_COMPLEX_INIT

_ C99_MIXED_DECL_AND_CODE _ IBMC_NORETURN

_ C99_MIXED_STRING_CONCAT _ IBMC_STATIC_ASSERT

_ C99_NON_LVALUE_ARRAY_SUB __IBMCPP_AUTO_TYPEDEDUCTION

_ C99_NON_CONST_AGGR_INITIALIZER __IBMCPP_C99_LONG_LONG

_ C99_PRAGMA_OPERATOR __IBMCPP_C99_PREPROCESSOR

__C99_REQUIRE_FUNC_DECL __IBMCPP_COMPLEX_INIT

_ C99_RESTRICT _ IBMCPP_CONSTEXPR

_ C99_STATIC_ARRAY_SIZE __IBMCPP_DECLTYPE

_ C99_STD_PRAGMAS __IBMCPP_DELEGATING_CTORS

_ C99_TGMATH __IBMCPP_EXPLICIT_CONVERSION_OPERATORS

_ C99_UCN __IBMCPP_EXTENDED_FRIEND

_ C99_VAR_LEN_ARRAY __IBMCPP_EXTERN_TEMPLATE

_ C99_VARIABLE_LENGTH_ARRAY __IBMCPP_INLINE_NAMESPACE

_ DIGRAPHS__ __IBMCPP_REFERENCE_COLLAPSING

_ EXTENDED__ _ IBMCPP_RIGHT_ANGLE_BRACKET

_ IBM__ALIGN __IBMCPP_RVALUE_REFERENCES

_IBM__ALIGNOF__ __IBMCPP_SCOPED_ENUM

_ IBM_ALIGNOEF__ _ IBMCPP_STATIC_ASSERT

_ IBM_ATTRIBUTES __ IBMCPP_UNIFORM_INIT

_ IBM_COMPUTED_GOTO __IBMCPP_VARIADIC_TEMPLATES
_LONG_LONG

Chapter 5. Compiler predefined macros 219

220 XL C/C++: Compiler Reference for Little Endian Distributions

Chapter 6. Compiler built-in functions

A built-in function is a coding extension to C and C++ that allows a programmer
to use the syntax of C function calls and C variables to access the instruction set of
the processor of the compiling machine. IBM Power architectures have special
instructions that enable the development of highly optimized applications. Access
to some Power instructions cannot be generated using the standard constructs of
the C and C++ languagesthe C language. Other instructions can be generated
through standard constructs, but using built-in functions allows exact control of the
generated code. Inline assembly language programming, which uses these
instructions directly, is fully supported starting from XL C/C++, V12.1.
Furthermore, the technique can be time-consuming to implement.

As an alternative to managing hardware registers through assembly language, XL
C/C++ built-in functions provide access to the optimized Power instruction set
and allow the compiler to optimize the instruction scheduling.

To call any of the XL C/C++ built-in functions in C++, you must include
the header file builtins.h in your source code. g

The following sections describe the available built-in functions for the Linux
platform.

* [“Fixed-point built-in functions”|

+ |“Binary floating-point built-in functions” on page 229

+ [“Binary-coded decimal built-in functions” on page 239|

* |“Synchronization and atomic built-in functions” on page 242|

+ [“Cache-related built-in functions” on page 249|

* |[“Cryptography built-in functions” on page 252|

+ [“Block-related built-in functions” on page 257

+ [“Miscellaneous built-in functions” on page 352|

Fixed-point built-in functions

Fixed-point built-in functions are grouped into the following categories:

+ [“Absolute value functions” on page 222|

* |“Assert functions” on page 222|

+ [“Count zero functions” on page 223|

* [“Load functions” on page 224|

[“Multiply functions” on page 225|

[“Population count functions” on page 225|

[‘Rotate functions” on page 226|

[“Store functions” on page 228

[“Trap functions” on page 228

© Copyright IBM Corp. 1996, 2014 221

Absolute value functions

__labs, __llabs
Purpose

Absolute Value Long, Absolute Value Long Long
Returns the absolute value of the argument.
Prototype

signed long __labs (signed long);

signed long long __llabs (signed long long);

Assert functions

__assertl, _ assert2
Purpose

Generates trap instructions.
Prototype
int __assertl (int, int, int);

void __assert2 (int);

Bit permutation functions

__bpermd
Purpose

Byte Permute Doubleword
Returns the result of a bit permutation operation.
Prototype
long long _ bpermd (long long bit_selector, long long source);
Usage
Eight bits are returned, each corresponding to a bit within source, and were
selected by a byte of bit_selector. If byte i of bit_selector is less than 64, the
permuted bit i is set to the bit of source specified by byte i of bit_selector;

otherwise, the permuted bit i is set to 0. The permuted bits are placed in the
least-significant byte of the result value and the remaining bits are filled with Os.

Comparison functions

__cmpb
Purpose

Compare Bytes

222 XL C/C++: Compiler Reference for Little Endian Distributions

Compares each of the eight bytes of sourcel with the corresponding byte of source2.
If byte i of sourcel and byte i of source? are equal, OxFF is placed in the
corresponding byte of the result; otherwise, 0x00 is placed in the corresponding
byte of the result.

Prototype

long long __cmpb (long long sourcel, long long source2);

Count zero functions

__cntlz4, _ cntlz8
Purpose

Count Leading Zeros, 4/8-byte integer
Prototype
unsigned int __cntlz4 (unsigned int);

unsigned int __cntlz8 (unsigned long long);

__cnttz4, _ cnttz8
Purpose

Count Trailing Zeros, 4/8-byte integer
Prototype
unsigned int __cnttz4 (unsigned int);

unsigned int __cnttz8 (unsigned long long);

Division functions

__divde
Purpose

Divide Doubleword Extended

Returns the result of a doubleword extended division. The result has a value equal
to dividend / divisor.

Prototype
long long __divde (long long dividend, long long divisor);
Usage

If the result of the division is larger than 32 bits or if the divisor is 0, the return
value of the function is undefined.

__divdeu
Purpose

Divide Doubleword Extended Unsigned

Chapter 6. Compiler built-in functions 223

Returns the result of a double word extended unsigned division. The result has a
value equal to dividend /divisor.

Prototype

unsigned long long __divdeu (unsigned long long dividend, unsigned long
long divisor);

Usage

If the result of the division is larger than 32 bits or if the divisor is 0, the return
value of the function is undefined.

__divwe
Purpose

Divide Word Extended

Returns the result of a word extended division. The result has a value equal to
dividend / divisor.

Prototype
int __divwe(int dividend, int divisor);
Usage
If the divisor is 0, the return value of the function is undefined.

__divweu
Purpose

Divide Word Extended Unsigned

Returns the result of a word extended unsigned division. The result has a value
equal to dividend /divisor.

Prototype
unsigned int __divweu(unsigned int dividend, unsigned int divisor);
Usage
If the divisor is 0, the return value of the function is undefined.
Load functions

__load2r, _ load4r
Purpose

Load Halfword Byte Reversed, Load Word Byte Reversed

224 XL C/C++: Compiler Reference for Little Endian Distributions

Prototype
unsigned short __load2r (unsigned short*);

unsigned int __load4r (unsigned int*);

__load8r
Purpose

Load with Byte Reversal (8-byte integer)
Performs an eight-byte byte-reversed load from the given address.
Prototype

unsigned long long __load8r (unsigned long long * address);

Multiply functions

__mulhd, __mulhdu
Purpose

Multiply High Doubleword Signed, Multiply High Doubleword Unsigned
Returns the highorder 64 bits of the 128bit product of the two parameters.
Prototype

long long int __mulhd (long int, long int);

unsigned long long int __mulhdu (unsigned long int, unsigned long int);

__mulhw, _ mulhwu
Purpose

Multiply High Word Signed, Multiply High Word Unsigned
Returns the highorder 32 bits of the 64bit product of the two parameters.
Prototype

int __mulhw (int, int);

unsigned int __mulhwu (unsigned int, unsigned int);

Population count functions

__popcnt4, _ popcnt8
Purpose

Population Count, 4-byte or 8-byte integer

Returns the number of bits set for a 32-bit or 64-bit integer.

Chapter 6. Compiler built-in functions 225

Prototype
int __popcnt4 (unsigned int);
int __popcnt8 (unsigned long long);

__popcntb
Purpose

Population Count Byte

Counts the 1 bits in each byte of the parameter and places that count into the
corresponding byte of the result.

Prototype

unsigned long __popcntb(unsigned long);

__poppar4, __poppar8
Purpose

Population Parity, 4/8-byte integer

Checks whether the number of bits set in a 32/64-bit integer is an even or odd
number.

Prototype

int __poppar4(unsigned int);

int __poppar8(unsigned long long);
Return value

Returns 1 if the number of bits set in the input parameter is odd. Returns 0
otherwise.

Rotate functions

__rdlam
Purpose

Rotate Double Left and AND with Mask
Rotates the contents of rs left shift bits, and ANDs the rotated data with the mask.
Prototype

unsigned long long __ rdlam (unsigned long long rs, unsigned int shift,
unsigned long long mask);

Parameters

mask
Must be a constant that represents a contiguous bit field.

226 XL C/C++: Compiler Reference for Little Endian Distributions

__ridimi, __rlwimi
Purpose

Rotate Left Doubleword Immediate then Mask Insert, Rotate Left Word Immediate
then Mask Insert

Rotates rs left shift bits then inserts rs into is under bit mask mask.
Prototype

unsigned long long __rldimi (unsigned long long rs, unsigned long long is,
unsigned int shift, unsigned long long mask);

unsigned int __rlwimi (unsigned int rs, unsigned int is, unsigned int shift,
unsigned int mask);

Parameters

shift
A constant value 0 to 63 (__r1dimi) or 31 (__rIwimi).

mask
Must be a constant that represents a contiguous bit field.

__rlwnm
Purpose

Rotate Left Word then AND with Mask
Rotates rs left shift bits, then ANDs rs with bit mask mask.
Prototype
unsigned int __rlwnm (unsigned int rs, unsigned int shift, unsigned int mask);

Parameters

mask
Must be a constant that represents a contiguous bit field.

__rotatel4, _ rotatel8
Purpose

Rotate Left Word, Rotate Left Doubleword
Rotates rs left shift bits.
Prototype
unsigned int __ rotatel4 (unsigned int rs, unsigned int shift);

unsigned long long __rotatel8 (unsigned long long rs, unsigned long long
shift);

Chapter 6. Compiler built-in functions 227

Store functions

__store2r, __storedr
Purpose

Store 2/4-byte Reversal
Prototype
void __store2r (unsigned short, unsigned short*);

void __storedr (unsigned int, unsigned int*);

__store8r
Purpose

Store with Byte-Reversal (eight-byte integer)

Takes the loaded eight-byte integer value and performs a byte-reversed store
operation.

Prototype

void __store8r (unsigned long long source, unsigned long long * address);

Trap functions

_ tdw, _ tw
Purpose

Trap Doubleword, Trap Word
Compares parameter 4 with parameter b. This comparison results in five conditions

which are ANDed with a 5-bit constant TO. If the result is not 0 the system trap
handler is invoked.

Prototype
void __tdw (long 4, long b, unsigned int TO);
void __tw (int g, int b, unsigned int TO);

Parameters

70 A value of 0 to 31 inclusive. Each bit position, if set, indicates one or more of
the following possible conditions:

0 (high-order bit)
a is less than b, using signed comparison.

1 a is greater than b, using signed comparison.
2 a is equal to b
3 a is less than b, using unsigned comparison.

4 (low-order bit)
a is greater than b, using unsigned comparison.

228 XL C/C++: Compiler Reference for Little Endian Distributions

__trap, __trapd
Purpose

Trap if the Parameter is not Zero, Trap if the Parameter is not Zero Doubleword
Prototype
void __trap (int);

void __trapd (long);

Binary floating-point built-in functions

Floating-point built-in functions are grouped into the following categories:

[“Absolute value functions” on page 222]

+ [“Conversion functions” on page 230|
[“FPSCR functions” on page 232
[“Multiply-add /subtract functions” on page 234|

+ [“Reciprocal estimate functions” on page 235|

[‘Rounding functions” on page 236|

[“Select functions” on page 237]

* [“Square root functions” on page 237|

[“Software division functions” on page 238|

Absolute value functions

__fnabss
Purpose

Floating Absolute Value Single
Returns the absolute value of the argument.
Prototype

float __fnabss (float);

__fnabs
Purpose

Floating Negative Absolute Value, Floating Negative Absolute Value Single
Returns the negative absolute value of the argument.
Prototype

double __fnabs (double);

float __fnabss (float);

Chapter 6. Compiler built-in functions 229

Conversion functions

__cmplx, __cmplxf, __cmplxI|
Purpose

Converts two real parameters into a single complex value.
Prototype

double _Complex __cmplx (double, double);

float _Complex __cmplxf (float, float);

long double _Complex __cmplxl (long double, long double);

_ fcfid
Purpose

Floating Convert from Integer Doubleword

Converts a 64-bit signed integer stored in a double to a double-precision
floating-point value.

Prototype

double __fcfid (double);

__fcfud
Purpose

Floating-point Conversion from Unsigned integer Double word

Converts a 64-bit unsigned integer stored in a double into a double-precision
floating-point value.

Prototype

double __fcfud(double);

_ fctid
Purpose

Floating Convert to Integer Doubleword

Converts a double-precision argument to a 64-bit signed integer, using the current
rounding mode, and returns the result in a double.

Prototype

double __fctid (double);

__fctidz
Purpose

Floating Convert to Integer Doubleword with Rounding towards Zero

230 XL C/C++: Compiler Reference for Little Endian Distributions

Converts a double-precision argument to a 64-bit signed integer, using the
rounding mode round-toward-zero, and returns the result in a double.

Prototype

double __fctidz (double);

__ fetiw
Purpose

Floating Convert to Integer Word

Converts a double-precision argument to a 32-bit signed integer, using the current
rounding mode, and returns the result in a double.

Prototype

double __fctiw (double);

_ fetiwz
Purpose

Floating Convert to Integer Word with Rounding towards Zero

Converts a double-precision argument to a 32-bit signed integer, using the
rounding mode round-toward-zero, and returns the result in a double.

Prototype

double __fctiwz (double);

_ fctudz
Purpose

Floating-point Conversion to Unsigned integer Double word with rounding
towards Zero

Converts a floating-point value to unsigned integer double word and rounds to
Zero.

Prototype
double __fctudz(double);
Result value

The result is a double number, which is rounded to zero.

__fetuwz
Purpose

Floating-point conversion to unsigned integer word with rounding to zero
Converts a floating-point number into a 32-bit unsigned integer and rounds to

zero. The conversion result is stored in a double return value. This function is
intended for use with the __ stfiw built-in function.

Chapter 6. Compiler built-in functions 231

Prototype
double __fctuwz(double);
Result value

The result is a double number. The low-order 32 bits of the result contain the
unsigned int value from converting the double parameter to unsigned int, rounded
to zero. The high-order 32 bits contain an undefined value.

Example

The following example demonstrates the usage of this function.
#include <stdio.h>
int main(){
double result;
int y;
result = _ fctuwz(-1.5);
_ stfiw(&y, result);
printf("%d\n", y); /* prints 0 */
result = _ fctuwz(1.5);
__stfiw(&y, result);
printf("%d\n", y); /* prints 1 */

return 0;

}

__ibm2gccldbl, __ibm2gccldbl_cmplix (IBM extension)
Purpose

Converts IBM-style long double data types to GCC long doubles.
Prototype
long double __ibm2gccldbl (long double);
_Complex long double __ibm2gccldbl_cmplx (_Complex long double);
Return value
The translated result conforms to GCC requirements for long doubles. However,

long double computations performed in IBM-compiled code may not produce
bitwise identical results to those obtained purely by GCC.

FPSCR functions

__mtfsb0
Purpose

Move to Floating-Point Status/Control Register (FPSCR) Bit 0

Sets bit bt of the FPSCR to 0.

232 XL C/C++: Compiler Reference for Little Endian Distributions

Prototype
void __mtfsb0 (unsigned int bt);

Parameters

bt Must be a constant with a value of 0 to 31.

__mifsb1
Purpose

Move to FPSCR Bit 1
Sets bit bt of the FPSCR to 1.
Prototype

void __mtfsbl (unsigned int bf);

Parameters

bt Must be a constant with a value of 0 to 31.

__mtfsf
Purpose

Move to FPSCR Fields

Places the contents of frb into the FPSCR under control of the field mask specified
by flm. The field mask fIm identifies the 4bit fields of the FPSCR affected.

Prototype
void __mtfsf (unsigned int fIm, unsigned int frb);

Parameters
flm

Must be a constant 8-bit mask.

__mtfsfi
Purpose

Move to FPSCR Field Immediate
Places the value of u into the FPSCR field specified by bf.
Prototype

void __mtfsfi (unsigned int bf, unsigned int u);

Parameters
bf Must be a constant with a value of 0 to 7.

u Must be a constant with a value of 0 to 15.

Chapter 6. Compiler built-in functions 233

__readflm
Purpose

Returns a 64-bit double precision floating point, whose 32 low order bits contain
the contents of the FPSCR. The 32 low order bits are bits 32 - 63 counting from the
highest order bit.
Prototype

double __readflm (void);

__setflm
Purpose

Takes a double precision floating-point number and places the lower 32 bits in the
FPSCR. The 32 low order bits are bits 32 - 63 counting from the highest order bit.
Returns the previous contents of the FPSCR.
Prototype

double __setflm (double);

__setrnd
Purpose

Sets the rounding mode.
Prototype

double __setrnd (int mode);
Parameters

The allowable values for mode are:
* 0 — round to nearest

* 1 — round to zero

* 2 —round to +infinity

* 3 —round to -infinity
Multiply-add/subtract functions

_ fmadd, _ fmadds
Purpose

Floating Multiply-Add, Floating Multiply-Add Single
Multiplies the first two arguments, adds the third argument, and returns the result.
Prototype

double __fmadd (double, double, double);

float __fmadds (float, float, float);

234 XL C/C++: Compiler Reference for Little Endian Distributions

_ fmsub, _ fmsubs
Purpose

Floating Multiply-Subtract, Floating Multiply-Subtract Single

Multiplies the first two arguments, subtracts the third argument and returns the
result.

Prototype
double __fmsub (double, double, double);
float __fmsubs (float, float, float);

_ fnmadd, _ fnmadds
Purpose

Floating Negative Multiply-Add, Floating Negative Multiply-Add Single

Multiplies the first two arguments, adds the third argument, and negates the
result.

Prototype
double __fnmadd (double, double, double);

float __fnmadds (float, float, float);

_ _fnmsub, _ fnmsubs
Purpose

Floating Negative Multiply-Subtract

Multiplies the first two arguments, subtracts the third argument, and negates the
result.

Prototype
double __fnmsub (double, double, double);

float __fnmsubs (float, float, float);

Reciprocal estimate functions

See also [“Square root functions” on page 237

__fre, _ fres
Purpose

Floating Reciprocal Estimate, Floating Reciprocal Estimate Single
Prototype
double __fre (double);

float __fres (float);

Chapter 6. Compiler built-in functions 235

Rounding functions

__fric
Purpose

Floating-point Rounding to Integer with current rounding mode

Rounds a double-precision floating-point value to integer with the current
rounding mode.

Prototype

double __fric(double);

_ frim, _ frims
Purpose

Floating Round to Integer Minus

Rounds the floating-point argument to an integer using round-to-minus-infinity
mode, and returns the value as a floating-point value.

Prototype
double __frim (double);

float _ frims (float);

__frin, __ frins
Purpose

Floating Round to Integer Nearest

Rounds the floating-point argument to an integer using round-to-nearest mode,
and returns the value as a floating-point value.

Prototype
double __frin (double);

float __frins (float);

__frip, __frips
Purpose

Floating Round to Integer Plus

Rounds the floating-point argument to an integer using round-to-plus-infinity
mode, and returns the value as a floating-point value.

Prototype
double __frip (double);

float __frips (float);

236 XL C/C++: Compiler Reference for Little Endian Distributions

_ friz, _ frizs
Purpose

Floating Round to Integer Zero

Rounds the floating-point argument to an integer using round-to-zero mode, and
returns the value as a floating-point value.

Prototype
double __ friz (double);

float __frizs (float);

Select functions

_ fsel, _ fsels
Purpose

Floating Select, Floating Select Single

Returns the second argument if the first argument is greater than or equal to zero;
returns the third argument otherwise.

Prototype
double __fsel (double, double, double);

float __fsels (float, float, float);

Square root functions

__frsqrte, __frsqrtes
Purpose

Floating Reciprocal Square Root Estimate, Floating Reciprocal Square Root Estimate
Single

Prototype
double __frsqrte (double);
float __ frsqrtes (float);

_ fsqrt, _ fsqrts
Purpose

Floating Square Root, Floating Square Root Single
Prototype
double __ fsqrt (double);

float __ fsqrts (float);

Chapter 6. Compiler built-in functions 237

Software division functions

_ swdiv, __swdivs
Purpose

Software Divide, Software Divide Single
Divides the first argument by the second argument and returns the result.
Prototype

double __swdiv (double, double);

float __swdivs (float, float);

__swdiv_nochk, _ swdivs_nochk
Purpose

Software Divide No Check, Software Divide No Check Single

Divides the first argument by the second argument, without performing range
checking, and returns the result.

Prototype
double __swdiv_nochk (double a, double b);
float _ swdivs_nochk (float a4, float b);

Parameters

a Must not equal infinity. When -gstrict is in effect, # must have an absolute
value greater than 2°” and less than infinity.

b Must not equal infinity, zero, or denormalized values. When -gstrict is in
effect, b must have an absolute value greater than 2% and less than 2'**".

Return value

The result must not be equal to positive or negative infinity. When -gstrict in
effect, the result must have an absolute value greater than 27" and less than 2'%%.

Usage
This function can provide better performance than the normal divide operator or

the __swdiv built-in function in situations where division is performed repeatedly
in a loop and when arguments are within the permitted ranges.

Store functions

__stfiw
Purpose

Store Floating Point as Integer Word

Stores the contents of the loworder 32 bits of value, without conversion, into the
word in storage addressed by addr.

238 XL C/C++: Compiler Reference for Little Endian Distributions

Prototype

void __stfiw (const int* addr, double value);

Binary-coded decimal built-in functions

Binary-coded decimal (BCD) values are compressed, with each decimal digit and
sign bit occupying 4 bits. Digits are ordered right-to-left in the order of
significance, and the final 4 bits encode the sign. A valid encoding must have a
value in the range 0 - 9 in each of its 31 digits and a value in the range 10 - 15 for
the sign field.

Source operands with sign codes of 0b1010, 0b1100, 0b1110, or Ob1111 are
interpreted as positive values. Source operands with sign codes of 0b1011 or
0b1101 are interpreted as negative values.

BCD arithmetic operations encode the sign of their result as follows: A value of
0b1101 indicates a negative value, while 0b1100 and 0b1111 indicate positive values
or zero, depending on the value of the preferred sign (PS) bit. These built-in
functions can operate on values of at most 31 digits.

BCD values are stored in memory as contiguous arrays of 1-16 bytes.

BCD add and subtract

__bcdadd
Purpose

Returns the result of addition on the BCD values 4 and b.

The sign of the result is determined as follows:
* If the result is a nonnegative value and ps is 0, the sign is set to 0b1100 (0xC).
* If the result is a nonnegative value and ps is 1, the sign is set to Ob1111 (0OxF).

* If the result is a negative value, the sign is set to Ob1101 (0xD).
Prototype

vector unsigned char __bcdadd (vector unsigned char a, vector unsigned char
b, long ps);
Parameters

ps A compile-time known constant.

__bcdsub
Purpose

Returns the result of subtraction on the BCD values a and b.

The sign of the result is determined as follows:

* If the result is a nonnegative value and ps is 0, the sign is set to 0b1100 (0xC).
* If the result is a nonnegative value and ps is 1, the sign is set to Ob1111 (0xF).
* If the result is a negative value, the sign is set to 0b1101 (0xD).

Chapter 6. Compiler built-in functions 239

Prototype

vector unsigned char __bcdsub (vector unsigned char a, vector unsigned char
b, long ps);

Parameters

ps A compile-time known constant.

BCD test add and subtract for overflow

__bcdadd_ofl
Purpose

Returns 1 if the corresponding BCD add operation results in an overflow, or 0
otherwise.

Prototype

long __bcdadd_ofl (vector unsigned char a, vector unsigned char b);

___bedsub_ofl
Purpose

Returns 1 if the corresponding BCD subtract operation results in an overflow, or 0
otherwise.

Prototype

long _ bcdsub_ofl (vector unsigned char 4, vector unsigned char b);

__bced_invalid
Purpose

Returns 1 if a is an invalid encoding of a BCD value, or 0 otherwise.
Prototype

long _ bced_invalid (vector unsigned char a);

BCD comparison

__bcdcmpeq
Purpose

Returns 1 if the BCD value a is equal to b, or 0 otherwise.
Prototype

long _bcdempeq (vector unsigned char a, vector unsigned char b);

__becdempge
Purpose

Returns 1 if the BCD value a is greater than or equal to b, or 0 otherwise.

240 XL C/C++: Compiler Reference for Little Endian Distributions

Prototype
long _ bcdempge (vector unsigned char a, vector unsigned char b);

__becdcmpgt
Purpose

Returns 1 if the BCD value a is greater than b, or 0 otherwise.
Prototype
long _ bcdempgt (vector unsigned char a, vector unsigned char b);

__bcdcmple
Purpose

Returns 1 if the BCD value 4 is less than or equal to b, or 0 otherwise.
Prototype
long __bcdemple (vector unsigned char a, vector unsigned char b);

__bcdcmplt
Purpose

Returns 1 if the BCD value a4 is less than b, or 0 otherwise.
Prototype

long __bcdemplt (vector unsigned char a, vector unsigned char b);

BCD load and store

__vec_Ildrmb
Purpose

Loads a string of bytes into vector register, right-justified. Sets the leftmost
elements (16-cnt) to 0.

Prototype
vector unsigned char _ vec_ldrmb (char *ptr, size_t cnt);

Parameters

ptr
Points to a base address.

ent
The number of bytes to load. The value of cnt must be in the range 1 - 16.

__vec_strmb
Purpose

Stores a right-justified string of bytes.

Chapter 6. Compiler built-in functions 241

Prototype

void __vec_strmb (char *ptr, size_t cnt, vector unsigned char data);

Parameters

ptr

Points to a base address.

cnt

The number of bytes to store. The value of cnt must be in the range 1 - 16 and
must be a compile-time known constant.

Synchronization and atomic built-in functions

Synchronization and atomic built-in functions are grouped into the following
categories:

[“Check lock functions”|
[“Clear lock functions” on page 243|

[“Compare and swap functions” on page 244}

[“Fetch functions” on page 245

[‘Load functions” on page 246|

[“Store functions” on page 247|

[‘Synchronization functions” on page 248|

Check lock functions

check_lock_mp, _ check_lockd_mp

Purpose

Check Lock on Multiprocessor Systems, Check Lock Doubleword on
Multiprocessor Systems

Conditionally updates a single word or doubleword variable atomically.

Prototype

unsigned int __check_lock_mp (const int* addr, int old_value, int new_value);

unsigned int __check_lockd_mp (const long long* addr, long long old_value,
long long new_value);

Parameters
addr

The address of the variable to be updated. Must be aligned on a 4-byte
boundary for a single word or on an 8-byte boundary for a doubleword.

old value

The old value to be checked against the current value in addr.

new_value

The new value to be conditionally assigned to the variable in addr,

242 XL C/C++: Compiler Reference for Little Endian Distributions

Return value

Returns false (0) if the value in addr was equal to old_value and has been set to the
new_value. Returns true (1) if the value in addr was not equal to old_value and has
been left unchanged.

__check_lock_up, _ _check_lockd_up
Purpose

Check Lock on Uniprocessor Systems, Check Lock Doubleword on Uniprocessor
Systems

Conditionally updates a single word or doubleword variable atomically.
Prototype
unsigned int __check_lock_up (const int* addr, int old_value, int new_value);

unsigned int _check_lockd_up (const long* addr, long old_value, long
new_value);

Parameters

addr
The address of the variable to be updated. Must be aligned on a 4-byte
boundary for a single word and on an 8-byte boundary for a doubleword.

old value
The old value to be checked against the current value in addr.

new_value
The new value to be conditionally assigned to the variable in addr,

Return value
Returns false (0) if the value in addr was equal to old_value and has been set to the

new value. Returns true (1) if the value in addr was not equal to old_value and has
been left unchanged.

Clear lock functions

__clear_lock_mp, __ clear_lockd_mp
Purpose

Clear Lock on Multiprocessor Systems, Clear Lock Doubleword on Multiprocessor
Systems

Atomic store of the value into the variable at the address addr.
Prototype
void __clear_lock_mp (const int* addr, int value);

void _ clear_lockd_mp (const long* addr, long value);

Chapter 6. Compiler built-in functions 243

Parameters

addr
The address of the variable to be updated. Must be aligned on a 4-byte
boundary for a single word and on an 8-byte boundary for a doubleword.

value
The new value to be assigned to the variable in addr,

__clear_lock_up, _ clear_lockd_up
Purpose

Clear Lock on Uniprocessor Systems, Clear Lock Doubleword on Uniprocessor
Systems

Atomic store of the value into the variable at the address addr.
Prototype

void __clear_lock_up (const int* addr, int value);

void _ clear_lockd_up (const long* addr, long value);

Parameters

addr
The address of the variable to be updated. Must be aligned on a 4-byte
boundary for a single word and on an 8-byte boundary for a doubleword.

value
The new value to be assigned to the variable in addr.

Compare and swap functions

__compare_and_swap, __compare_and_swaplp
Purpose

Conditionally updates a single word or doubleword variable atomically.
Prototype
int _ compare_and_swap (volatile int* addr, int* old_val_addr, int new_val);

int __compare_and_swaplp (volatile long* addr, long* old_val_addr, long
new_val);

Parameters

addr
The address of the variable to be copied. Must be aligned on a 4-byte
boundary for a single word and on an 8-byte boundary for a doubleword.

old val _addr
The memory location into which the value in addr is to be copied.

new_val
The value to be conditionally assigned to the variable in addr,

244 XL C/C++: Compiler Reference for Little Endian Distributions

Return value

Returns true (1) if the value in addr was equal to old_value and has been set to the

new value. Returns false (0) if the value in addr was not equal to old_value and has
been left unchanged. In either case, the contents of the memory location specified

by addr are copied into the memory location specified by old_val_addr.

Usage

The __compare_and_swap function is useful when a single word value must be
updated only if it has not been changed since it was last read. If you use
__compare_and_swap as a locking primitive, insert a call to the __isync built-in
function at the start of any critical sections.

Fetch functions

_ fetch_and_and, _ fetch_and_andlp
Purpose

Clears bits in the word or doubleword specified byaddr by AND-ing that value
with the value specified by val, in a single atomic operation, and returns the
original value of addr.

Prototype
unsigned int _ fetch_and_and (volatile unsigned int* addr, unsigned int val);

unsigned long _ fetch_and_andlp (volatile unsigned long* addr, unsigned
long wval);
Parameters

addr
The address of the variable to be ANDed. Must be aligned on a 4-byte
boundary for a single word and on an 8-byte boundary for a doubleword.

value
The value by which the value in addr is to be ANDed.

Usage

This operation is useful when a variable containing bit flags is shared between
several threads or processes.

_ fetch_and_or, _ fetch_and_orlp
Purpose

Sets bits in the word or doubleword specified by addr by OR-ing that value with
the value specified val, in a single atomic operation, and returns the original value
of addr.

Prototype

unsigned int _ fetch_and_or (volatile unsigned int* addr, unsigned int val);

unsigned long _ fetch_and_orlp (volatile unsigned long* addr, unsigned long
val);

Chapter 6. Compiler built-in functions 245

Parameters

addr
The address of the variable to be ORed. Must be aligned on a 4-byte boundary
for a single word and on an 8-byte boundary for a doubleword.

value
The value by which the value in addr is to be ORed.
Usage

This operation is useful when a variable containing bit flags is shared between
several threads or processes.

_ fetch_and_swap, _ fetch_and_swaplp
Purpose

Sets the word or doubleword specified by addr to the value of val and returns the
original value of addr, in a single atomic operation.

Prototype
unsigned int __ fetch_and_swap (volatile unsigned int* addr, unsigned int val);

unsigned long _ fetch_and_swaplp (volatile unsigned long* addr, unsigned
long wval);
Parameters

addr
The address of the variable to be updated. Must be aligned on a 4-byte
boundary for a single word and on an 8-byte boundary for a doubleword.

value
The value which is to be assigned to addr.

Usage
This operation is useful when a variable is shared between several threads or

processes, and one thread needs to update the value of the variable without losing
the value that was originally stored in the location.

Load functions

__lgarx, __Idarx, _ lwarx, __lharx, __Ibarx
Purpose

Load Quadword and Reserve Indexed, Load Doubleword and Reserve Indexed,
Load Word and Reserve Indexed, Load Halfword and Reserve Indexed, Load Byte

and Reserve Indexed

Loads the value from the memory location specified by addr and returns the result.
For __1warx,the compiler returns the sign-extended result.

246 XL C/C++: Compiler Reference for Little Endian Distributions

Prototype
void __lgarx (volatile long* addr, long dst[2]);
long _ ldarx (volatile long* addr);
int __lwarx (volatile int* addr);
short __lharx(volatile short* addr);
char __lbarx(volatile char* addr);

Parameters

addr
The address of the value to be loaded. Must be aligned on a 4-byte boundary
for a single word, on an 8-byte boundary for a doubleword, and on a 16-byte
boundary for a quadword.

dst
The address to which the value is loaded.

Usage

This function can be used with a subsequent __stqcx (__stdcx, __stwex, _sthex,
or _stbcx) built-in function to implement a read-modify-write on a specified
memory location. The two built-in functions work together to ensure that if the
store is successfully performed, no other processor or mechanism have modified
the target memory between the time the 1oad function is executed and the time the
store function completes. This has the same effect on code motion as inserting
__fence built-in functions before and after the 1oad function and can inhibit
compiler optimization of surrounding code (see [“__alignx” on page 352 for a
description of the _ fence built-in function).

Store functions

_ stgex, _ stdex, _ stwex, _ sthex, _ stbex
Purpose

Store Quadword Conditional Indexed, Store Doubleword Conditional Indexed,
Store Word Conditional Indexed, Store Halfword Conditional Indexed, Store Byte
Conditional Indexed
Stores the value specified by val into the memory location specified by addr.
Prototype

int __stqex(volatile long* addr, long val[2]);

int __stdex(volatile long* addr, long val);

int __stwex(volatile int* addr, int val);

int __sthex(volatile short* addr, short val);

int __stbex(volatile char* addr, char val);

Chapter 6. Compiler built-in functions 247

Parameters

addr
The address of the variable to be updated. Must be aligned on a 4-byte
boundary for a single word and on an 8-byte boundary for a doubleword.

val
The value that is to be assigned to addr.

Return value

Returns 1 if the update of addr is successful and 0 if it is unsuccessful.

Usage

This function can be used with a preceding _ 1qarx (__Tdarx, _ Twarx, _ lharx, or
__Tbarx) built-in function to implement a read-modify-write on a specified
memory location. The two built-in functions work together to ensure that if the
store is successfully performed, no other processor or mechanism can modify the
target doubleword between the time the _ Tdarx function is executed and the time
the _ stdcx function completes. This has the same effect as inserting _ fence

built-in functions before and after the _ stdcx built-in function and can inhibit
compiler optimization of surrounding code.

Synchronization functions

__eieio, __iospace_eioio
Purpose

Enforce In-order Execution of Input/Output
Ensures that all I/O storage access instructions preceding the call to __eioeio
complete in main memory before 1/O storage access instructions following the
function call can execute.
Prototype

void __eieio (void);

void __iospace_eieio (void);
Usage
This function is useful for managing shared data instructions where the execution
order of load/store access is significant. The function can provide the necessary
functionality for controlling I/O stores without the cost to performance that can

occur with other synchronization instructions.

__isync
Purpose

Instruction Synchronize
Waits for all previous instructions to complete and then discards any prefetched

instructions, causing subsequent instructions to be fetched (or refetched) and
executed in the context established by previous instructions.

248 XL C/C++: Compiler Reference for Little Endian Distributions

Prototype
void __isync (void);

__lwsync, __iospace_lwsync
Purpose

Lightweight Synchronize
Ensures that all instructions preceding the call to __1wsync complete before any
subsequent store instructions can be executed on the processor that executed the
function. Also, it ensures that all load instructions preceding the call to __Twsync
complete before any subsequent load instructions can be executed on the processor
that executed the function. This allows you to synchronize between multiple
processors with minimal performance impact, as __lwsync does not wait for
confirmation from each processor.
Prototype

void __lwsync (void);

void __iospace_lwsync (void);

__sync, __iospace_sync
Purpose

Synchronize

Ensures that all instructions preceding the function the call to __sync complete
before any instructions following the function call can execute.

Prototype
void __sync (void);

void __iospace_sync (void);

Cache-related built-in functions

Cache-related built-in functions are grouped into the following categories:

+ [“Data cache functions”]

* [“Prefetch built-in functions” on page 251/

Data cache functions

__dcbf
Purpose

Data Cache Block Flush

Copies the contents of a modified block from the data cache to main memory and
flushes the copy from the data cache.

Chapter 6. Compiler built-in functions 249

Prototype
void __dcbf(const void* addr);

__dcbfl
Purpose

Data Cache Block Flush Line
Flushes the cache line at the specified address from the L1 data cache.
Prototype
void __dcbfl (const void* addr);
Usage

The target storage block is preserved in the L2 cache.

__dcbst
Purpose

Data Cache Block Store
Copies the contents of a modified block from the data cache to main memory.
Prototype

void __dcbst(const void* addr);

__dcbt
Purpose

Data Cache Block Touch
Loads the block of memory containing the specified address into the L1 data cache.
Prototype

void __dcbt (void* addr);

__dcbtna
Purpose

Data cache block hint no longer accessed

Indicates that the block containing address will not be accessed for a long time;
therefore, it must not be kept in the L1 data cache.

Note: Using this function does not necessarily evict the containing block from the
data cache.

Prototype

void __dcbtna (void *addr);

250 XL C/C++: Compiler Reference for Little Endian Distributions

__dcbtst
Purpose

Data Cache Block Touch for Store
Fetches the block of memory containing the specified address into the data cache.
Prototype

void __dcbtst(void* addr);

__dcbz
Purpose

Data Cache Block set to Zero
Sets a cache line containing the specified address in the data cache to zero (0).
Prototype

void __dcbz (void* addr);

__icbt
Purpose

Instruction cache block touch
Indicates that the program will soon run code in the instruction cache block
containing address, and that the block containing address must be loaded into the
instruction cache.
Prototype
void __icbt (void *addr) ;
Prefetch built-in functions

__prefetch_by_load
Purpose

Touches a memory location by using an explicit load.
Prototype

void __ prefetch_by_load (const void*);

__prefetch_by_stream
Purpose

Touches consecutive memory locations by using an explicit stream.
Prototype

void __ prefetch_by_stream (const int, const void*);

Chapter 6. Compiler built-in functions 251

Cryptography built-in functions

Advanced Encryption Standard functions

Advanced Encryption Standard (AES) functions provide support for Federal
Information Processing Standards Publication 197 (FIPS-197), which is a
specification for encryption and decryption.

__vcipher
Purpose

Performs one round of the AES cipher operation on intermediate state state_array
using a given round_key.

Prototype

vector unsigned char __vcipher (vector unsigned char state_array, vector
unsigned char round_key);

Parameters

state_array
The input data chunk to be encrypted or the result of a previous vcipher
operation.

round_key
The 128-bit AES round key value that is used to encrypt.

Result

Returns the resulting intermediate state.

__vcipherlast
Purpose

Performs the final round of the AES cipher operation on intermediate state
state_array using a given round_key.

Prototype

vector unsigned char _ vcipherlast (vector unsigned char state_array, vector
unsigned char round_key);

Parameters

state_array
The result of a previous vcipher operation.

round key
The 128-bit AES round key value that is used to encrypt.

Result

Returns the resulting final state.

252 XL C/C++: Compiler Reference for Little Endian Distributions

__vncipher
Purpose

Performs one round of the AES inverse cipher operation on intermediate state
state_array using a given round_key.

Prototype

vector unsigned char __vncipher (vector unsigned char state_array, vector
unsigned char round_key);

Parameters

state_array
The input data chunk to be decrypted or the result of a previous vncipher
operation.

round_key
The 128-bit AES round key value that is used to decrypt.

Result

Returns the resulting intermediate state.

__vncipherlast
Purpose

Performs the final round of the AES inverse cipher operation on intermediate state
state_array using a given round_key.

Prototype

vector unsigned char __vncipherlast (vector unsigned char state_array, vector
unsigned char round_key);

Parameters

state_array
The result of a previous vncipher operation.

round key
The 128-bit AES round key value that is used to decrypt.

Result

Returns the resulting final state.

__vsbox
Purpose

Performs the SubBytes operation, as defined in FIPS-197, on a state_array.
Prototype

vector unsigned char __vsbox (vector unsigned char state_array);

Chapter 6. Compiler built-in functions 253

Parameters

state_array
The input data chunk to be encrypted or the result of a previous vcipher
operation.

Result

Returns the result of the operation.

Secure Hash Algorithm functions

Secure Hash Algorithm (SHA) functions provide support for Federal Information
Processing Standards Publication 180-3 (FIPS-180-3), Secure Hash Standard. All
SHA functions operate on unsigned vector integer types.

__vshasigmad
Purpose

Provides support for Federal Information Processing Standards Publication
FIPS-180-3, which is a specification for Secure Hash Standard.

Prototype

vector unsigned long long __vshasigmad (vector unsigned long long x, int
type, int fmask);

Parameters

type
A compile-time constant in the range 0 - 1. The type parameter selects the
function type, which can be either lowercase sigma or uppercase sigma.

fmask
A compile-time constant in the range 0 - 15. The fmask parameter selects the
function subtype, which can be either sigma-0 or sigma-1.

Result
Let mask be the rightmost 4 bits of fmask.

For each element i (i=0,1) of x, element i of the returned value is the following
result SHA-512 function:

* The result SHA-512 function is sigma0(x[i]), if type is 0 and bit 2*i of mask is 0.
* The result SHA-512 function is sigmal(x[i]), if type is 0 and bit 2*i of mask is 1.

* The result SHA-512 function is Sigma0(x[i]), if type is non-zero and bit 2*i of
mask is 0.

* The result SHA-512 function is Sigmal(x[i]), if type is non-zero and bit 2*i of
mask is 1.

__vshasigmaw
Purpose

Provides support for Federal Information Processing Standards Publication
FIPS-180-3, which is a specification for Secure Hash Standard.

254 XL C/C++: Compiler Reference for Little Endian Distributions

Prototype
vector unsigned int __vshasigmaw (vector unsigned int x, int type, int finask)

Parameters

type
A compile-time constant in the range 0 - 1. The type parameter selects the
function type, which can be either lowercase sigma or uppercase sigma.

fmask
A compile-time constant in the range 0 - 15. The fmask parameter selects the
function subtype, which can be either sigma-0 or sigma-1.

Result
Let mask be the rightmost 4 bits of fmask.

For each element i (i=0,1,2,3) of x, element i of the returned value is the following
result SHA-256 function:

* The result SHA-256 function is sigma0(x[i]), if type is 0 and bit i of mask is 0.
* The result SHA-256 function is sigmal(x[i]), if type is 0 and bit i of mask is 1.

* The result SHA-256 function is Sigma@(x[i]), if type is nonzero and bit i of
mask is 0.

* The result SHA-256 function is Sigmal(x[i]), if type is nonzero and bit i of
mask is 1.

Miscellaneous functions

__vpermxor
Purpose

Applies a permute and exclusive-OR operation on two byte vectors.
Prototype

vector unsigned char __vpermxor (vector unsigned char 4, vector unsigned
char b, vector unsigned char mask);

Result

For each i (0 <=1 < 16), let indexA be bits 0 - 3 and indexB be bits 4 - 7 of byte
element i of mask.

Byte element i of the result is set to the exclusive-OR of byte elements indexA of a
and indexB of b.

Related reference:

[-maltivec (-galtivec)” on page 100

Related information:

[Vector element order toggling]

Chapter 6. Compiler built-in functions 255

__vpmsumb
Purpose

Performs the exclusive-OR operation on each even-odd pair of the
polynomial-multiplication result of corresponding elements.

Prototype

vector unsigned char __vpmsumb (vector unsigned char a, vector unsigned
char b)

Result

For each i (0 <= i < 16), let prod[i] be the result of polynomial multiplication of
byte elements i of a and b.

For each i (0 <= i < 8), each halfword element i of the result is set as follows:
* Bit 0 is set to 0.
* Bits 1 - 15 are set to prod[2*i] (xor) prod[2*i+1].

__vpmsumd
Purpose

Performs the exclusive-OR operation on each even-odd pair of the
polynomial-multiplication result of corresponding elements.

Prototype

vector unsigned long long _ vpmsumd (vector unsigned long long a, vector
unsigned long long b);

Result

For each i (0 <= i < 2), let prod[i] be the result of polynomial multiplication of
doubleword elements i of a and b.

Bit 0 of the result is set to 0.

Bits 1 - 127 of the result are set to prod[0] (xor) prod[1].

__vpmsumh
Purpose

Performs the exclusive-OR operation on each even-odd pair of the
polynomial-multiplication result of corresponding elements.

Prototype

vector unsigned short __vpmsumh (vector unsigned short a, vector unsigned
short b);

Result

For each i (0 <=1 < 8), let prod[i] be the result of polynomial multiplication of
halfword elements i of 4 and b.

256 XL C/C++: Compiler Reference for Little Endian Distributions

For eachi (0 <= i < 4), each word element i of the result is set as follows:
* Bit 0 is set to 0.
* Bits 1 - 31 are set to prod[2*i] (xor) prod[2xi+1].

__vpmsumw
Purpose

Performs the exclusive-OR operation on each even-odd pair of the
polynomial-multiplication result of corresponding elements.

Prototype

vector unsigned int __vpmsumw (vector unsigned int g, vector unsigned int
b);

Result

For each i (0 <= i < 4), let prod[i] be the result of polynomial multiplication of
word elements i of 2 and b.

For each i (0 <=1 < 2), each doubleword element i of the result is set as follows:
* Bit 0 is set to 0.
* Bits 1 - 63 are set to prod[2*i] (xor) prod[2*i+1].

Block-related built-in functions

__bcopy

Purpose
Copies n bytes from src to dest. The result is correct even when both areas overlap.
Prototype

void __bcopy(const void* src, void* dest, size_t n);

Parameters

src
The source address of data to be copied.

dest
The destination address of data to be copied

n The size of the data.

Vector built-in functions

Individual elements of vectors can be accessed by using the Vector Multimedia
Extension (VMX) or the Vector Scalar Extension (VSX) built-in functions. This
section provides an alphabetical reference to the VMX and the VSX built-in
functions. You can use these functions to manipulate vectors.

You must specify appropriate compiler options for your architecture when you use
the built-in functions. Built-in functions that use or return a vector unsigned long

Chapter 6. Compiler built-in functions 257

long, vector signed long long, vector bool long long, or vector double type
require an architecture that supports the VSX instruction set extensions.

Function syntax

This section uses pseudocode description to represent function syntax, as shown
below:
d=func_name(a, b, c)

In the description,

* d represents the return value of the function.

* 3, b, and c represent the arguments of the function.
» func_name is the name of the function.

For example, the syntax for the function vector double vec_x1d2(int, doublex);
is represented by d=vec_x1d2(a, b).

Note: This section only describes the IBM specific vector built-in functions and the
AltiVec built-in functions with IBM extensions. For information about the other
AltiVec built-in functions, see the AltiVec Application Programming Interface
specification.

Related reference:

[-maltivec (-galtivec)” on page 100|

vec_abs

Purpose
Returns a vector containing the absolute values of the contents of the given vector.

Syntax

d=vec_abs(a)
Result and argument types

The following table describes the types of the returned value and the function
arguments.

d a

vector signed char

vector signed char

vector signed short

vector signed short

vector signed int

vector signed int

vector float

vector float

vector double

vector double

Result value

The value of each element of the result is the absolute value of the corresponding

element of a.

258 XL C/C++: Compiler Reference for Little Endian Distributions

vec_add

Purpose

Returns a vector containing the sums of each set of corresponding elements of the

given vectors.

This function emulates the operation on long long vectors.

Syntax
d=vec_add(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d

a

b

vector signed char

vector signed char

vector signed char

vector unsigned char

vector unsigned char

vector unsigned char

vector signed short

vector signed short

vector signed short

vector unsigned short

vector unsigned short

vector unsigned short

vector signed int

vector signed int

vector signed int

vector unsigned int

vector unsigned int

vector unsigned int

vector signed long long

vector signed long long

vector signed long long

vector unsigned long long

vector unsigned long long

vector unsigned long long

vector float

vector float

vector float

vector double

vector double

vector double

Result value

The value of each element of the result is the sum of the corresponding elements
of a and b. For integer vectors and unsigned vectors, the arithmetic is modular.

vec_add ui128

Purpose

Adds unsigned quadword values.

The function operates on vectors as 128-bit unsigned integers.

Syntax
d=vec_add_ul28(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Chapter 6. Compiler built-in functions

d a b

vector unsigned char vector unsigned char vector unsigned char

Result value

Returns low 128 bits of a + b.

vec_addc _ui28

Purpose
Gets the carry bit of the 128-bit addition of two quadword values.
The function operates on vectors as 128-bit unsigned integers.

Syntax
d=vec_addc_ul28(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

d a b

vector unsigned char vector unsigned char vector unsigned char

Result value

Returns the carry out of a + b.

vec_adde ui28

Purpose
Adds unsigned quadword values with carry bit from the previous operation.
The function operates on vectors as 128-bit unsigned integers.

Syntax
d=vec_adde_ul28(a, b, c)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

d a b C

vector unsigned char |vector unsigned char |vector unsigned char |vector unsigned char

Result value

Returns low 128 bits of a + b + (c & 1).

260 XL C/C++: Compiler Reference for Little Endian Distributions

vec_addec_ui128
Purpose

Gets the carry bit of the 128-bit addition of two quadword values with carry bit
from the previous operation.

The function operates on vectors as 128-bit unsigned integers.

Syntax

d=vec_addec_ul28(a, b, c)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d

a

b

C

vector unsigned char

vector unsigned char

vector unsigned char

vector unsigned char

Result value

Returns the carry out of a + b + (c & 1).

vec_all_eq
Purpose

Tests whether all sets of corresponding elements of the given vectors are equal.

Syntax
d=vec_all_eq(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Chapter 6. Compiler built-in functions 261

a

b

int

vector bool char

vector bool char

vector signed char

vector unsigned char

vector signed char

vector bool char

vector signed char

vector unsigned char

vector bool char

vector unsigned char

vector bool short

vector bool short

vector signed short

vector unsigned short

vector signed short

vector bool short

vector signed short

vector unsigned short

vector bool short

vector unsigned short

vector bool int

vector bool int

vector signed int

vector unsigned int

vector signed int

vector bool int

vector signed int

vector unsigned int

vector bool int

vector unsigned int

vector bool long long

vector bool long long

vector signed long long

vector unsigned long long

vector signed long long

vector bool long long

vector signed long long

vector unsigned long long

vector bool long long

vector unsigned long long

vector float

vector float

vector double

vector double

Result value

The result is 1 if each element of a is equal to the corresponding element of b.

Otherwise, the result is 0.

vec_all_ge
Purpose

Tests whether all elements of the first argument are greater than or equal to the
corresponding elements of the second argument.

262 XL C/C++: Compiler Reference for Little Endian Distributions

Syntax

d=vec_all_ge(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.
d a b
int vector bool char vector signed char

vector unsigned char

vector signed char

vector bool char

vector signed char

vector unsigned char

vector bool char

vector unsigned char

vector bool short

vector signed short

vector unsigned short

vector signed short

vector bool short

vector signed short

vector unsigned short

vector bool short

vector unsigned short

vector bool int

vector signed int

vector unsigned int

vector signed int

vector bool int

vector signed int

vector unsigned int

vector bool int

vector unsigned int

vector bool long long

vector signed long long

vector unsigned long long

vector signed long long

vector bool long long

vector signed long long

vector unsigned long long

vector bool long long

vector unsigned long long

vector float

vector float

vector double

vector double

Result value

The result is 1 if all elements of a are greater than or equal to the corresponding
elements of b. Otherwise, the result is 0.

vec_all_gt
Purpose

Tests whether all elements of the first argument are greater than the corresponding

elements of the second argument.

Chapter 6. Compiler built-in functions

Syntax
d=vec_all _gt(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d

a

b

int

vector bool char

vector signed char

vector unsigned char

vector signed char

vector bool char

vector signed char

vector unsigned char

vector bool char

vector unsigned char

vector bool short

vector signed short

vector unsigned short

vector signed short

vector bool short

vector signed short

vector unsigned short

vector bool short

vector unsigned short

vector bool int

vector signed int

vector unsigned int

vector signed int

vector bool int

vector signed int

vector unsigned int

vector bool int

vector unsigned int

vector bool long long

vector signed long long

vector unsigned long long

vector signed long long

vector bool long long

vector signed long long

vector unsigned long long

vector bool long long

vector unsigned long long

vector float

vector float

vector double

vector double

Result value

The result is 1 if all elements of a are greater than the corresponding elements of b.
Otherwise, the result is 0.

vec_all_le
Purpose

Tests whether all elements of the first argument are less than or equal to the
corresponding elements of the second argument.

264 XL C/C++: Compiler Reference for Little Endian Distributions

Syntax

d=vec_all_le(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.
d a b
int vector bool char vector signed char

vector unsigned char

vector signed char

vector bool char

vector signed char

vector unsigned char

vector bool char

vector unsigned char

vector bool short

vector signed short

vector unsigned short

vector signed short

vector bool short

vector signed short

vector unsigned short

vector bool short

vector unsigned short

vector bool int

vector signed int

vector unsigned int

vector signed int

vector bool int

vector signed int

vector unsigned int

vector bool int

vector unsigned int

vector bool long long

vector signed long long

vector unsigned long long

vector signed long long

vector bool long long

vector signed long long

vector unsigned long long

vector bool long long

vector unsigned long long

vector float

vector float

vector double

vector double

Result value

The result is 1 if all elements of a are less than or equal to the corresponding
elements of b. Otherwise, the result is 0.

vec_all_lIt
Purpose

Tests whether all elements of the first argument are less than the corresponding
elements of the second argument.

Chapter 6. Compiler built-in functions

Syntax
d=vec_all_1t(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d

a

b

int

vector bool char

vector signed char

vector unsigned char

vector signed char

vector bool char

vector signed char

vector unsigned char

vector bool char

vector unsigned char

vector bool short

vector signed short

vector unsigned short

vector signed short

vector bool short

vector signed short

vector unsigned short

vector bool short

vector unsigned short

vector bool int

vector signed int

vector unsigned int

vector signed int

vector bool int

vector signed int

vector unsigned int

vector bool int

vector unsigned int

vector bool long long

vector signed long long

vector unsigned long long

vector signed long long

vector bool long long

vector signed long long

vector unsigned long long

vector bool long long

vector unsigned long long

vector float

vector float

vector double

vector double

Result value

The result is 1 if all elements of a are less than the corresponding elements of b.

Otherwise, the result is 0.

vec_all _nan
Purpose

Tests whether each element of the given vector is a NaN.

266 XL C/C++: Compiler Reference for Little Endian Distributions

Syntax

d=vec_all_nan(a)

Result and argument types

The following table describes the types of the returned value and the function

arguments.
d a
int vector float

vector double

Result value

The result is 1 if each element of a is a NaN. Otherwise, the result is 0.

vec_all_ne
Purpose

Tests whether all sets of corresponding elements of the given vectors are not equal.

Syntax

d=vec_all _ne(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Chapter 6. Compiler built-in functions

267

a

b

int

vector bool char

vector signed char

vector unsigned char

vector signed char

vector bool char

vector signed char

vector unsigned char

vector bool char

vector unsigned char

vector bool short

vector signed short

vector unsigned short

vector signed short

vector bool short

vector signed short

vector unsigned short

vector bool short

vector unsigned short

vector bool int

vector signed int

vector unsigned int

vector signed int

vector bool int

vector signed int

vector unsigned int

vector bool int

vector unsigned int

vector bool long long

vector signed long long

vector unsigned long long

vector signed long long

vector bool long long

vector signed long long

vector unsigned long long

vector bool long long

vector unsigned long long

vector float

vector float

vector double

vector double

Result value

The result is 1 if each element of a is not equal to the corresponding element of b.
Otherwise, the result is 0.

vec_all_nge
Purpose

Tests whether each element of the first argument is not greater than or equal to the
corresponding element of the second argument.

Syntax

d=vec_all_nge(a, b)

268 XL C/C++: Compiler Reference for Little Endian Distributions

Result and argument types

The following table describes the types of the returned value and the function

arguments.
d a b
int vector float vector float

vector double vector double

Result value

The result is 1 if each element of a is not greater than or equal to the
corresponding element of b. Otherwise, the result is 0.

vec_all_ngt
Purpose

Tests whether each element of the first argument is not greater than the
corresponding element of the second argument.

Syntax
d=vec_all_ngt(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.
d a b
int vector float vector float

vector double vector double

Result value

The result is 1 if each element of a is not greater than the corresponding element of
b. Otherwise, the result is 0.

vec_all_nle
Purpose

Tests whether each element of the first argument is not less than or equal to the
corresponding element of the second argument.

Syntax

d=vec_all_nle(a, b)
Result and argument types

The following table describes the types of the returned value and the function
arguments.

Chapter 6. Compiler built-in functions 269

a

b

int

vector float

vector float

vector double

vector double

Result value

The result is 1 if each element of a is not less than or equal to the corresponding
element of b. Otherwise, the result is 0.

vec_all_nlt
Purpose

Tests whether each element of the first argument is not less than the corresponding
element of the second argument.

Syntax
d=vec_all nlt(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.
d a b
int vector float vector float

vector double vector double

Result value

The result is 1 if each element of a is not less than the corresponding element of b.
Otherwise, the result is 0.

vec_all_numeric
Purpose

Tests whether each element of the given vector is numeric (not a NaN).

Syntax

d=vec_all_numeric(a)
Result and argument types

The following table describes the types of the returned value and the function

arguments.
d a
int vector float

vector double

270 XL C/C++: Compiler Reference for Little Endian Distributions

Result value

The result is 1 if each element of a is numeric (not a NaN). Otherwise, the result is

0.

vec_and

Purpose

Performs a bitwise AND of the given vectors.

Syntax

d=vec_and(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d

a

b

vector bool char

vector bool char

vector bool char

vector signed char

vector bool char

vector signed char

vector signed char

vector signed char

vector bool char

vector unsigned char

vector bool char

vector unsigned char

vector unsigned char

vector unsigned char

vector bool char

vector bool short

vector bool short

vector vector bool short

vector signed short

vector bool short

vector signed short

vector signed short

vector signed short

vector bool short

vector unsigned short

vector bool short

vector unsigned short

vector unsigned short

vector unsigned short

vector bool short

vector bool int

vector bool int

vector bool int

vector signed int

vector bool int

vector signed int

vector signed int

vector signed int

vector bool int

vector unsigned int

vector bool int

vector unsigned int

vector unsigned int

vector unsigned int

vector bool int

vector bool long long

vector bool long long

vector bool long long

vector signed long long

vector bool long long

vector signed long long

vector signed long long

vector signed long long

vector bool long long

Chapter 6. Compiler built-in functions

271

d

a

b

vector unsigned long long

vector bool long long

vector unsigned long long

vector unsigned long long

vector unsigned long long

vector bool long long

vector float

vector bool int

vector float

vector float

vector bool int

vector float

vector double

vector bool long long

vector double

vector double

vector double

vector bool long long

vec_andc

Purpose

Performs a bitwise AND of the first argument and the bitwise complement of the

second argument.

Syntax

d=vec_andc(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d

a

b

vector bool char

vector bool char

vector bool char

vector signed char

vector bool char

vector signed char

vector signed char

vector signed char

vector bool char

vector unsigned char

vector bool char

vector unsigned char

vector unsigned char

vector unsigned char

vector bool char

vector bool short

vector bool short

vector bool short

vector signed short

vector bool short

vector signed short

vector signed short

vector signed short

vector bool short

vector unsigned short

vector bool short

vector unsigned short

vector unsigned short

vector unsigned short

vector bool short

vector bool int

vector bool int

vector bool int

vector signed int

vector bool int

vector signed int

vector signed int

vector signed int

vector bool int

272 XL C/C++: Compiler Reference for Little Endian Distributions

d

a

b

vector unsigned int

vector bool int

vector unsigned int

vector unsigned int

vector unsigned int

vector bool int

vector bool long long

vector bool long long

vector bool long long

vector signed long long

vector bool long long

vector signed long long

vector signed long long

vector signed long long

vector bool long long

vector unsigned long long

vector bool long long

vector unsigned long long

vector unsigned long long

vector unsigned long long

vector bool long long

vector float

vector bool int

vector float

vector float

vector bool int

vector float

vector double

vector bool long long

vector double

vector double

vector bool long long

vector double

Result value

The result is the bitwise AND of a with the bitwise complement of b.

vec_any_eq

Purpose

Tests whether any set of corresponding elements of the given vectors are equal.

Syntax

d=vec_any eq(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Chapter 6. Compiler built-in functions

273

a

b

int

vector bool char

vector bool char

vector signed char

vector unsigned char

vector signed char

vector bool char

vector signed char

vector unsigned char

vector bool char

vector unsigned char

vector bool short

vector bool short

vector signed short

vector unsigned short

vector signed short

vector bool short

vector signed short

vector unsigned short

vector bool short

vector unsigned short

vector bool int

vector bool int

vector signed int

vector unsigned int

vector signed int

vector bool int

vector signed int

vector unsigned int

vector bool int

vector unsigned int

vector bool long long

vector bool long long

vector signed long long

vector unsigned long long

vector signed long long

vector bool long long

vector signed long long

vector unsigned long long

vector bool long long

vector unsigned long long

vector float

vector float

vector double

vector double

Result value

The result is 1 if any element of a is equal to the corresponding element of b.

Otherwise, the result is 0.

vec_any_ge
Purpose

Tests whether any element of the first argument is greater than or equal to the
corresponding element of the second argument.

274 XL C/C++: Compiler Reference for Little Endian Distributions

Syntax

d=vec_any ge(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.
d a b
int vector bool char vector signed char

vector unsigned char

vector signed char

vector bool char

vector signed char

vector unsigned char

vector bool char

vector unsigned char

vector bool short

vector signed short

vector unsigned short

vector signed short

vector signed short

vector bool short

vector unsigned short

vector bool short

vector unsigned short

vector bool int

vector signed int

vector unsigned int

vector signed int

vector bool int

vector signed int

vector unsigned int

vector bool int

vector unsigned int

vector bool long long

vector signed long long

vector unsigned long long

vector signed long long

vector bool long long

vector signed long long

vector unsigned long long

vector bool long long

vector unsigned long long

vector float

vector float

vector double

vector double

Result value

The result is 1 if any element of a is greater than or equal to the corresponding
element of b. Otherwise, the result is 0.

vec_any_gt
Purpose

Tests whether any element of the first argument is greater than the corresponding
element of the second argument.

Chapter 6. Compiler built-in functions

Syntax
d=vec_any gt(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d

a

b

int

vector bool char

vector signed char

vector unsigned char

vector signed char

vector bool char

vector signed char

vector unsigned char

vector bool char

vector unsigned char

vector bool short

vector signed short

vector unsigned short

vector signed short

vector signed short

vector bool short

vector unsigned short

vector bool short

vector unsigned short

vector bool int

vector signed int

vector unsigned int

vector signed int

vector bool int

vector signed int

vector unsigned int

vector bool int

vector unsigned int

vector bool long long

vector signed long long

vector unsigned long long

vector signed long long

vector bool long long

vector signed long long

vector unsigned long long

vector bool long long

vector unsigned long long

vector float

vector float

vector double

vector double

Result value

The result is 1 if any element of a is greater than the corresponding element of b.
Otherwise, the result is 0.

vec_any_le
Purpose

Tests whether any element of the first argument is less than or equal to the
corresponding element of the second argument.

276 XL C/C++: Compiler Reference for Little Endian Distributions

Syntax

d=vec_any le(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.
d a b
int vector bool char vector signed char

vector unsigned char

vector signed char

vector bool char

vector signed char

vector unsigned char

vector bool char

vector unsigned char

vector bool short

vector signed short

vector unsigned short

vector signed short

vector signed short

vector bool short

vector unsigned short

vector bool short

vector unsigned short

vector bool int

vector signed int

vector unsigned int

vector signed int

vector bool int

vector signed int

vector unsigned int

vector bool int

vector unsigned int

vector bool long long

vector signed long long

vector unsigned long long

vector signed long long

vector bool long long

vector signed long long

vector unsigned long long

vector bool long long

vector unsigned long long

vector float

vector float

vector double

vector double

Result value

The result is 1 if any element of a is less than or equal to the corresponding
element of b. Otherwise, the result is 0.

vec_any_It
Purpose

Tests whether any element of the first argument is less than the corresponding
element of the second argument.

Chapter 6. Compiler built-in functions

Syntax
d=vec_any 1t(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d

a

b

int

vector bool char

vector signed char

vector unsigned char

vector signed char

vector bool char

vector signed char

vector unsigned char

vector bool char

vector unsigned char

vector bool short

vector signed short

vector unsigned short

vector signed short

vector signed short

vector bool short

vector unsigned short

vector bool short

vector unsigned short

vector bool int

vector signed int

vector unsigned int

vector signed int

vector bool int

vector signed int

vector unsigned int

vector bool int

vector unsigned int

vector bool long long

vector signed long long

vector unsigned long long

vector signed long long

vector bool long long

vector signed long long

vector unsigned long long

vector bool long long

vector unsigned long long

vector float

vector float

vector double

vector double

Result value

The result is 1 if any element of a is less than the corresponding element of b.

Otherwise, the result is 0.

vec_any_nan
Purpose

Tests whether any element of the given vector is a NaN.

278 XL C/C++: Compiler Reference for Little Endian Distributions

Syntax

d=vec_any nan(a)

Result and argument types

The following table describes the types of the returned value and the function

arguments.
d a
int vector float

vector double

Result value

The result is 1 if any element of a is a NaN. Otherwise, the result is 0.

vec_any_ne
Purpose

Tests whether any set of corresponding elements of the given vectors are not equal.

Syntax

d=vec_any ne(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Chapter 6. Compiler built-in functions

279

a

b

int

vector bool char

vector bool char

vector signed char

vector unsigned char

vector signed char

vector bool char

vector signed char

vector unsigned char

vector bool char

vector unsigned char

vector bool short

vector bool short

vector signed short

vector unsigned short

vector signed short

vector bool short

vector signed short

vector unsigned short

vector bool short

vector unsigned short

vector bool int

vector bool int

vector signed int

vector unsigned int

vector signed int

vector bool int

vector signed int

vector unsigned int

vector bool int

vector unsigned int

vector bool long long

vector bool long long

vector signed long long

vector unsigned long long

vector signed long long

vector bool long long

vector signed long long

vector unsigned long long

vector bool long long

vector unsigned long long

vector float

vector float

vector double

vector double

Result value

The result is 1 if any element of a is not equal to the corresponding element of b.
Otherwise, the result is 0.

vec_any_nge
Purpose

Tests whether any element of the first argument is not greater than or equal to the
corresponding element of the second argument.

280 XL C/C++: Compiler Reference for Little Endian Distributions

Syntax

d=vec_any nge(a, b)
Result and argument types

The following table describes the types of the returned value and the function
arguments.

d a b
int vector float vector float
vector double vector double

Result value

The result is 1 if any element of a is not greater than or equal to the corresponding
element of b. Otherwise, the result is 0.

vec_any_ngt

Purpose

Tests whether any element of the first argument is not greater than the
corresponding element of the second argument.

Syntax
d=vec_any ngt(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

d a b
int vector float vector float
vector double vector double

Result value

The result is 1 if any element of a is not greater than the corresponding element of
b. Otherwise, the result is 0.

vec_any_nle

Purpose

Tests whether any element of the first argument is not less than or equal to the
corresponding element of the second argument.

Syntax

d=vec_any nle(a, b)

Chapter 6. Compiler built-in functions 281

Result and argument types

The following table describes the types of the returned value and the function

arguments.
d a b
int vector float vector float

vector double

vector double

Result value

The result is 1 if any element of a is not less than or equal to the corresponding
element of b. Otherwise, the result is 0.

vec_any_nlt
Purpose

Tests whether any element of the first argument is not less than the corresponding
element of the second argument.

Syntax
d=vec_any nlt(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.
d a b
int vector float vector float

vector double

vector double

Result value

The result is 1 if any element of a is not less than the corresponding element of b.

Otherwise, the result is 0.

vec_any_humeric
Purpose

Tests whether any element of the given vector is numeric (not a NaN).

Syntax

d=vec_any_numeric(a)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

282 XL C/C++: Compiler Reference for Little Endian Distributions

d a

int vector float

vector double

Result value

The result is 1 if any element of a is numeric (not a NaN). Otherwise, the result is 0.

vec_bperm
Purpose

Gathers up to 16-bit values from a quadword in the specified order.
The function operates on vectors as 128-bit unsigned integers.

Syntax

d=vec_bperm(a, b)
Result and argument types

The following table describes the types of the returned value and the function

arguments.
d a b
vector unsigned char vector unsigned char vector unsigned char

Result value
For each i (0 <= i < 16), let index denote the byte value of the ith element of b.
If index is greater than or equal to 128, bit 48+i of the result is set to 0.

If index is smaller than 128, bit 48+i of the result is set to the value of the indexth
bit of input a.

vec_ceil
Purpose
Returns a vector containing the smallest representable floating-point integral values

greater than or equal to the values of the corresponding elements of the given
vector.

Note: vec_ceil is another name for vec_roundp. For details, see [‘vec_roundp” on|
_ae 320.

vec_cmpeq
Purpose

Returns a vector containing the results of comparing each set of corresponding
elements of the given vectors for equality.

Chapter 6. Compiler built-in functions 283

This function emulates the operation on long long vectors.

Syntax

d=vec_cmpeq(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d

a

b

vector bool char

vector bool char

vector bool char

vector signed char

vector signed char

vector unsigned char

vector unsigned char

vector bool short

vector bool short

vector bool short

vector signed short

vector signed short

vector unsigned short

vector unsigned short

vector bool int

vector bool int

vector bool int

vector signed int

vector signed int

vector unsigned int

vector unsigned int

vector float

vector float

vector bool long long

vector bool long long

vector bool long long

vector signed long long

vector signed long long

vector unsigned long long

vector unsigned long long

vector double

vector double

Result value

For each element of the result, the value of each bit is 1 if the corresponding
elements of a and b are equal. Otherwise, the value of each bit is 0.

vec_cmpge

Purpose

Returns a vector containing the results of a greater-than-or-equal-to comparison
between each set of corresponding elements of the given vectors.

Syntax

d=vec_cmpge(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d

a

b

vector bool char

vector signed char

vector signed char

vector unsigned char

vector unsigned char

284 XL C/C++: Compiler Reference for Little Endian Distributions

d

a

b

vector bool short

vector signed short

vector signed short

vector unsigned short

vector unsigned short

vector bool int

vector signed int

vector signed int

vector unsigned int

vector unsigned int

vector float

vector float

vector bool long long

vector signed long long

vector signed long long

vector unsigned long long

vector unsigned long long

vector double

vector double

Result value

For each element of the result, the value of each bit is 1 if the value of the
corresponding element of a is greater than or equal to the value of the
corresponding element of b. Otherwise, the value of each bit is 0.

vec_cmpgt

Purpose

Returns a vector containing the results of a greater-than comparison between each
set of corresponding elements of the given vectors.

This function emulates the operation on long long vectors.

Syntax
d=vec_cmpgt(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d

a

b

vector bool char

vector signed char

vector signed char

vector unsigned char

vector unsigned char

vector bool short

vector signed short

vector signed short

vector unsigned short

vector unsigned short

vector bool int

vector signed int

vector signed int

vector unsigned int

vector unsigned int

vector float

vector float

vector bool long long

vector signed long long

vector signed long long

vector unsigned long long

vector unsigned long long

vector double

vector double

Chapter 6. Compiler built-in functions

285

Result value

For each element of the result, the value of each bit is 1 if the value of the
corresponding element of a is greater than the value of the corresponding element
of b. Otherwise, the value of each bit is 0.

vec_cmple

Purpose

Returns a vector containing the results of a less-than-or-equal-to comparison
between each set of corresponding elements of the given vectors.

Syntax

d=vec_cmple(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d

a

b

vector bool char

vector signed char

vector signed char

vector unsigned char

vector unsigned char

vector bool short

vector signed short

vector signed short

vector unsigned short

vector unsigned short

vector bool int

vector signed int

vector signed int

vector unsigned int

vector unsigned int

vector float

vector float

vector bool long long

vector signed long long

vector signed long long

vector unsigned long long

vector unsigned long long

vector double

vector double

Result value

For each element of the result, the value of each bit is 1 if the value of the
corresponding element of a is less than or equal to the value of the corresponding
element of b. Otherwise, the value of each bit is 0.

vec_cmplt

Purpose

Returns a vector containing the results of a less-than comparison between each set

of corresponding elements of the given vectors.

This operation emulates the operation on long long vectors.

Syntax
d=vec_cmplt(a, b)

286 XL C/C++: Compiler Reference for Little Endian Distributions

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d

a

b

vector bool char

vector signed char

vector signed char

vector unsigned char

vector unsigned char

vector bool short

vector signed short

vector signed short

vector unsigned short

vector unsigned short

vector bool int

vector signed int

vector signed int

vector unsigned int

vector unsigned int

vector float

vector float

vector bool long long

vector signed long long

vector signed long long

vector unsigned long long

vector unsigned long long

vector double

vector double

Result value

For each element of the result, the value of each bit is 1

if the value of the

corresponding element of a is less than the value of the corresponding element of
b. Otherwise, the value of each bit is 0.

vec_cntlz

Purpose

Computes the count of leading zero bits of each element of the input.

Syntax

d=vec_cntlz(a)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d

a

vector unsigned char vector unsigned char

vector unsigned char vector signed char

vector unsigned short vector unsigned short

vector unsigned short vector signed short

vector unsigned int vector unsigned int

vector unsigned int vector signed int

vector unsigned long long vector unsigned long long

vector unsigned long long vector signed long long

Chapter 6. Compiler built-in functions 287

Result value

Each element of the result is set to the number of leading zeros of the
corresponding element of a.

vec_cpsgn
Purpose

Returns a vector by copying the sign of the elements in vector a to the sign of the
corresponding elements in vector b.

Syntax

d=vec_cpsgn(a, b)
Result and argument types

The following table describes the types of the returned value and the function

arguments.

d a b

vector float vector float vector float

vector double vector double vector double
vec_ctd

Purpose

Converts the type of each element in a from integer to floating-point single
precision and divides the result by 2 to the power of b.

Syntax
d=vec_ctd(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.
d a b
vector double vector signed int 0-31
vector unsigned int
vector signed long long
vector unsigned long long
vec_ctf
Purpose

Converts a vector of fixed-point numbers into a vector of floating-point numbers.

Syntax
d=vec_ctf(a, b)

288 XL C/C++: Compiler Reference for Little Endian Distributions

Result and argument types

The following table describes the types of the returned value and the function
arguments.

d a b

vector float vector signed int 0-31

vector unsigned int

vector signed long long

vector unsigned long long

Result value

The value of each element of the result is the closest floating-point estimate of the
value of the corresponding element of a divided by 2 to the power of b.

Note: The second and fourth elements of the result vector are undefined when the
argument a is a signed long long or unsigned long long vector.

vec_cts

Purpose

Converts a vector of floating-point numbers into a vector of signed fixed-point
numbers.

Syntax

d=vec_cts(a, b)
Result and argument types

The following table describes the types of the returned value and the function
arguments.

d a b

vector signed int vector float 0-31

vector double

Result value

The value of each element of the result is the saturated value obtained by
multiplying the corresponding element of a by 2 to the power of b.

vec_ctsl

Purpose

Multiplies each element in a by 2 to the power of b and converts the result into an
integer.

Note: This function does not use elements 1 and 3 of a when a is a double vector.

Chapter 6. Compiler built-in functions 289

Syntax
d=vec_cts1(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.
d a b
vector signed long long vector float 0-31
vector double
vec_ctu
Purpose

Converts a vector of floating-point numbers into a vector of unsigned fixed-point
numbers.

Note: Elements 1 and 3 of the result vector are undefined when a is a double
vector.

Syntax

d=vec_ctu(a, b)
Result and argument types

The following table describes the types of the returned value and the function

arguments.
d a b
vector unsigned int vector float 0-31

vector double

Result value

The value of each element of the result is the saturated value obtained by
multiplying the corresponding element of a by 2 to the power of b.

vec_ctul
Purpose

Multiplies each element in a by 2 to the power of b and converts the result into an
unsigned type.

Syntax
d=vec_ctul(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

290 XL C/C++: Compiler Reference for Little Endian Distributions

d a b

vector unsigned long long vector float 0-31

vector double

Result value

This function does not use elements 1 and 3 of a when a is a float vector.

vec_cvf
Purpose
Converts a single-precision floating-point vector to a double-precision
floating-point vector or converts a double-precision floating-point vector to a

single-precision floating-point vector.

Syntax

d=vec_cvf(a)
Result and argument types

The following table describes the types of the returned value and the function

arguments.

d a

vector float vector double
vector double vector float

Result value

When this function converts from vector float to vector double, it converts the
types of elements 0 and 2 in the vector.

When this function converts from vector double to vector float, the types of
element 1 and 3 in the result vector are undefined.

vec_div
Purpose

Divides the elements in vector a by the corresponding elements in vector b and
then assigns the result to corresponding elements in the result vector.

This function emulates the operation on integer vectors.

Syntax
d=vec_div(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Chapter 6. Compiler built-in functions 291

d

a

b

vector signed char

vector signed char

vector signed char

vector unsigned char

vector unsigned char

vector unsigned char

vector signed short

vector signed short

vector signed short

vector unsigned short

vector unsigned short

vector unsigned short

vector signed int

vector signed int

vector signed int

vector unsigned int

vector unsigned int

vector unsigned int

vector signed long long

vector signed long long

vector signed long long

vector unsigned long long

vector unsigned long long

vector unsigned long long

vector float

vector float

vector float

vector double

vector double

vector double

vec_eqVv

Purpose

Performs a bitwise equivalence operation on the input vectors.

Syntax

d=vec_eqv(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Table 34. Types of the returned value and function arguments

d

a

b

vector unsigned long long

vector unsigned long long

vector unsigned long long

vector signed long long

vector signed long long

vector signed long long

vector unsigned long long

vector unsigned long long

vector bool long long

vector signed long long

vector signed long long

vector bool long long

vector unsigned long long

vector bool long long

vector unsigned long long

vector signed long long

vector bool long long

vector signed long long

vector bool long long

vector bool long long

vector bool long long

vector unsigned int

vector unsigned int

vector unsigned int

vector signed int

vector signed int

vector signed int

vector unsigned int

vector unsigned int

vector bool int

vector signed int

vector signed int

vector bool int

vector unsigned int

vector bool int

vector unsigned int

vector signed int

vector bool int

vector signed int

vector bool int

vector bool int

vector bool int

vector unsigned short

vector unsigned short

vector unsigned short

vector signed short

vector signed short

vector signed short

vector unsigned short

vector unsigned short

vector bool short

292 XL C/C++: Compiler Reference for Little Endian Distributions

Table 34. Types of the returned value and function arguments (continued)

d

a

b

vector signed short

vector signed short

vector bool short

vector unsigned short

vector bool short

vector unsigned short

vector signed short

vector bool short

vector signed short

vector bool short

vector bool short

vector bool short

vector unsigned char

vector unsigned char

vector unsigned char

vector signed char

vector signed char

vector signed char

vector unsigned char

vector unsigned char

vector bool char

vector signed char

vector signed char

vector bool char

vector unsigned char

vector bool char

vector unsigned char

vector signed char

vector bool char

vector signed char

vector bool char

vector bool char

vector bool char

vector float

vector float

vector float

vector float

vector bool int

vector float

vector float

vector float

vector bool int

vector double

vector double

vector double

vector double

vector bool long long

vector double

vector double

vector double

vector bool long long

Result value

Each bit of the result is set to the result of the bitwise operation (a = b) of the

corresponding bits of a and b. For 0 <= 1 < 128, bit i of the result is set to 1 only if
bit i of a is equal to bit i of b.

vec_extract

Purpose

Returns the value of element b from the vector a.

Syntax

d=vec_extract(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Chapter 6. Compiler built-in functions

293

d

a

b

signed char

vector signed char

unsigned char

vector unsigned char

vector bool char

signed short

vector signed short

unsigned short

vector unsigned short

vector bool short

signed int

vector signed int

unsigned int

vector unsigned int

vector bool int

signed long long

vector signed long long

unsigned long long

vector unsigned long long

vector bool long long

float

vector float

double

vector double

signed int

Result value

This function uses the modulo arithmetic on b to determine the element number.
For example, if b is out of range, the compiler uses b modulo the number of
elements in the vector to determine the element position.

Related reference:

[-maltivec (-galtivec)” on page 100|

Related information:

[Vector element order toggling|

vec_floor

Purpose

Returns a vector containing the largest representable floating-point integral values
less than or equal to the values of the corresponding elements of the given vector.

Note: vec_floor is another name for vec_roundm. For details, see [“vec_roundm” on|
page 320.

vec_gbb
Purpose

Performs a gather-bits-by-bytes operation on the input.

Syntax
d=vec_gbb(a)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

294 XL C/C++: Compiler Reference for Little Endian Distributions

d

a

vector unsigned long long

vector unsigned long long

vector signed long long

vector signed long long

Result value

Each doubleword element of the result is set as follows: Let x(i) (0 <= i < 8)
denote the byte elements of the corresponding input doubleword element, with
x(7) the most significant byte. For each pair of i and j (0 <=1 <8, 0 <= j < 8), the
jth bit of the ith byte element of the result is set to the value of the ith bit of the
jth byte element of the input.

vec_insert

Purpose

Returns a copy of the vector b with the value of its element c replaced by a.

Syntax

d=vec_insert(a, b, c)

Result and argument types

The following table describes the types of the returned value and the function

arguments.
d a b c
vector signed char signed char vector signed char signed int

vector unsigned char

unsigned char

vector bool char

vector unsigned char

vector signed short

signed short

vector signed short

vector unsigned short

unsigned short

vector bool short

vector unsigned short

vector signed int

signed int

vector signed int

vector unsigned int

unsigned int

vector bool int

vector unsigned int

vector signed long
long

signed long long

vector signed long
long

vector unsigned long
long

unsigned long long

vector bool long long

vector unsigned long
long

vector float

float

vector float

vector double

double

vector double

Result value

This function uses the modulo arithmetic on ¢ to determine the element number.
For example, if ¢ is out of range, the compiler uses ¢ modulo the number of

Chapter 6. Compiler built-in functions

295

elements in the vector to determine the element position.

Related reference:

[“-maltivec (-galtivec)” on page 100|

Related information:

[Vector element order toggling]

vec_Id
Purpose
Loads a vector from the given memory address.

Syntax
d=vec_1d(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Table 35. Data type of function returned value and arguments

d a

b

vector unsigned int

const unsigned long*

vector signed int int const signed long*
vector unsigned char const vector unsigned char*
const unsigned char*
vector signed char const vector signed char*
long const signed char*

vector unsigned short

const vector unsigned short*

const unsigned short*

vector signed short

const vector signed short*

const signed short*

vector unsigned int

const vector unsigned int*

const unsigned int*

vector signed int

const vector signed int*

const signed int*

vector float

const vector float*

const float*

vector bool int

const vector bool int*

vector bool char

const vector bool char*

vector bool short

const vector bool short*

vector pixel

const vector pixel*

296 XL C/C++: Compiler Reference for Little Endian Distributions

Result value

a is added to the address of b, and the sum is truncated to a multiple of 16 bytes.

The result is the content of the 16 bytes of memory starting at this address.

Related reference:

[-maltivec (-galtivec)” on page 100|

Related information:

[Vector element order toggling|

vec_lvsl

Purpose

Returns a vector useful for aligning non-aligned data.

Syntax
d=vec_lvs1(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Table 36. Data type of function returned value and arguments

d

a

b

int

unsigned long*

long?*

vector unsigned char

long

unsigned char*

signed char*

unsigned short*

short*

unsigned int*

int*

float*

Result value

The first element of the result vector is the sum of a and the address of b, modulo

16. Each successive element contains the previous element's value plus 1.

vec_lvsr

Purpose

Returns a vector useful for aligning non-aligned data.

Syntax

d=vec_lvsr(a, b)

Chapter 6. Compiler built-in functions

297

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 37. Data type of function returned value and arguments
d a b

unsigned long*

int long*

unsigned char*

signed char*

vector unsigned char unsigned short*

long short*

unsigned int*

int*

float*

Result value
The effective address is the sum of a and the address of b, modulo 16. The first

element of the result vector contains the value 16 minus the effective address. Each
successive element contains the previous element's value plus 1.

vec_madd

Purpose

Returns a vector containing the results of performing a fused multiply-add
operation for each corresponding set of elements of the given vectors.

Syntax

d=vec_madd(a, b, c)
Result and argument types

The following table describes the types of the returned value and the function

arguments.

d a b c

vector float vector float vector float vector float
vector double vector double vector double vector double

Result value
The value of each element of the result is the product of the values of the

corresponding elements of a and b, added to the value of the corresponding
element of c.

298 XL C/C++: Compiler Reference for Little Endian Distributions

vec_max
Purpose

Returns a vector containing the maximum value from each set of corresponding
elements of the given vectors.

Syntax

d=vec_max(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d

a

b

vector signed char

vector bool char

vector signed char

vector signed char

vector signed char

vector bool char

vector unsigned char

vector bool char

vector unsigned char

vector unsigned char

vector unsigned char

vector bool char

vector signed short

vector bool short

vector signed short

vector signed short

vector signed short

vector bool short

vector unsigned short

vector bool short

vector unsigned short

vector unsigned short

vector unsigned short

vector bool short

vector signed int

vector bool int

vector signed int

vector signed int

vector signed int

vector bool int

vector unsigned int

vector bool int

vector unsigned int

vector unsigned int

vector unsigned int

vector bool int

vector float

vector float

vector float

vector double

vector double

vector double

vector signed long long

vector signed long long

vector signed long long

vector unsigned long long

vector unsigned long long

vector unsigned long long

vector bool long long

vector bool long long

vector bool long long

Result value

The value of each element of the result is the maximum of the values of the
corresponding elements of a and b.

Chapter 6. Compiler built-in functions

299

vec_mergeh

Purpose

Merges the most significant halves of two vectors.

Syntax

d=vec_mergeh(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d

a

b

vector bool char

vector bool char

vector bool char

vector signed char

vector signed char

vector signed char

vector unsigned char

vector unsigned char

vector unsigned char

vector bool short

vector bool short

vector bool short

vector signed short

vector signed short

vector signed short

vector unsigned short

vector unsigned short

vector unsigned short

vector bool int

vector bool int

vector bool int

vector signed int

vector signed int

vector signed int

vector unsigned int

vector unsigned int

vector unsigned int

vector bool long long

vector bool long long

vector bool long long

vector signed long long

vector signed long long

vector signed long long

vector unsigned long long

vector unsigned long long

vector unsigned long long

vector float

vector float

vector float

vector double

vector double

vector double

Result value

Assume that the elements of each vector are numbered beginning with 0. The
even-numbered elements of the result are taken, in order, from the high elements
of a. The odd-numbered elements of the result are taken, in order, from the high

elements of b.
Related reference:

[-maltivec (-galtivec)” on page 100|

“vec_mergel”|

Related information:

[Vector element order toggling|

vec_mergel

Purpose

Merges the least significant halves of two vectors.

300 XLC/C++: Compiler Reference for Little Endian Distributions

Syntax

d=vec_mergel(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d

a

b

vector bool char

vector bool char

vector bool char

vector signed char

vector signed char

vector signed char

vector unsigned char

vector unsigned char

vector unsigned char

vector bool short

vector bool short

vector bool short

vector signed short

vector signed short

vector signed short

vector unsigned short

vector unsigned short

vector unsigned short

vector bool int

vector bool int

vector bool int

vector signed int

vector signed int

vector signed int

vector unsigned int

vector unsigned int

vector unsigned int

vector bool long long

vector bool long long

vector bool long long

vector signed long long

vector signed long long

vector signed long long

vector unsigned long long

vector unsigned long long

vector unsigned long long

vector float

vector float

vector float

vector double

vector double

vector double

Result value

Assume that the elements of each vector are numbered beginning with 0. The

even-numbered elements of the result are taken, in order, from the low elements of

a. The odd-numbered elements of the result are taken, in order, from the low

elements of b.
Related reference:

[“-maltivec (-galtivec)” on page 100|

[‘vec_mergeh” on page 300|

Related information:

[Vector element order toggling]

vec_min

Purpose

Returns a vector containing the minimum value from each set of corresponding
elements of the given vectors.

Syntax

d=vec_min(a, b)

Chapter 6. Compiler built-in functions

Result and argument types

The following table describes the types of the returned value and the function

arguments.
d a b
vector signed char vector bool char vector signed char
vector signed char vector signed char
vector bool char
vector unsigned char vector bool char vector unsigned char
vector unsigned char vector unsigned char
vector bool char
vector signed short vector bool short vector signed short
vector signed short vector signed short
vector bool short
vector unsigned short vector bool short vector unsigned short
vector unsigned short vector unsigned short
vector bool short
vector signed int vector bool int vector signed int
vector signed int vector signed int
vector bool int
vector unsigned int vector bool int vector unsigned int
vector unsigned int vector unsigned int
vector bool int
vector float vector float vector float
vector double vector double vector double
vector signed long long vector signed long long vector signed long long
vector unsigned long long vector unsigned long long vector unsigned long long
vector bool long long vector bool long long vector bool long long

Result value

The value of each element of the result is the minimum of the values of the
corresponding elements of a and b.

vec_msub

Purpose

Returns a vector containing the results of performing a multiply-subtract operation
using the given vectors.

Syntax

d=vec_msub(a, b, c)

302 XLC/C++: Compiler Reference for Little Endian Distributions

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d a

b

C

vector float

vector float

vector float

vector float

vector double

vector double

vector double

vector double

Result value

This function multiplies each element in a by the corresponding element in b and
then subtracts the corresponding element in ¢ from the result.

vec_mul

Purpose

Returns a vector containing the results of performing a multiply operation using

the given vectors.

Note: For integer and unsigned vectors, this function emulates the operation.

Syntax

d=vec_mul(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d

a

b

vector signed char

vector signed char

vector signed char

vector unsigned char

vector unsigned char

vector unsigned char

vector signed short

vector signed short

vector signed short

vector unsigned short

vector unsigned short

vector unsigned short

vector signed int

vector signed int

vector signed int

vector unsigned int

vector unsigned int

vector unsigned int

vector signed long long

vector signed long long

vector signed long long

vector unsigned long long

vector unsigned long long

vector unsigned long long

vector float

vector float

vector float

vector double

vector double

vector double

Result value

This function multiplies corresponding elements in the given vectors and then
assigns the result to corresponding elements in the result vector.

Chapter 6. Compiler built-in functions

303

vec_hnhabs
Purpose

Returns a vector containing the results of performing a negative-absolute operation
using the given vector.

Syntax

d=vec_nabs(a)
Result and argument types

The following table describes the types of the returned value and the function
arguments.

d a

vector float vector float

vector double vector double

Result value

This function computes the absolute value of each element in the given vector and
then assigns the negated value of the result to the corresponding elements in the
result vector.

vec_nand
Purpose

Performs a bitwise negated-and operation on the input vectors.

This built-in function is valid only when -qarch is set to target POWERS
processors.

Syntax

d=vec_nand(a, b)
Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 38. Types of the returned value and function arguments

d a b

vector unsigned long long

vector unsigned long long

vector unsigned long long

vector signed long long

vector signed long long

vector signed long long

vector unsigned long long

vector unsigned long long

vector bool long long

vector signed long long

vector signed long long

vector bool long long

vector unsigned long long

vector bool long long

vector unsigned long long

vector signed long long

vector bool long long

vector signed long long

vector bool long long

vector bool long long

vector bool long long

304 XLC/C++: Compiler Reference for Little Endian Distributions

Table 38. Types of the returned value and function arguments (continued)

d

a

b

vector unsigned int

vector unsigned int

vector unsigned int

vector signed int

vector signed int

vector signed int

vector unsigned int

vector unsigned int

vector bool int

vector signed int

vector signed int

vector bool int

vector unsigned int

vector bool int

vector unsigned int

vector signed int

vector bool int

vector signed int

vector bool int

vector bool int

vector bool int

vector unsigned short

vector unsigned short

vector unsigned short

vector signed short

vector signed short

vector signed short

vector unsigned short

vector unsigned short

vector bool short

vector signed short

vector signed short

vector bool short

vector unsigned short

vector bool short

vector unsigned short

vector signed short

vector bool short

vector signed short

vector bool short

vector bool short

vector bool short

vector unsigned char

vector unsigned char

vector unsigned char

vector signed char

vector signed char

vector signed char

vector unsigned char

vector unsigned char

vector bool char

vector signed char

vector signed char

vector bool char

vector unsigned char

vector bool char

vector unsigned char

vector signed char

vector bool char

vector signed char

vector bool char

vector bool char

vector bool char

vector float

vector float

vector float

vector float

vector bool int

vector float

vector float

vector float

vector bool int

vector double

vector double

vector double

vector double

vector bool long long

vector double

vector double

vector double

vector long long

Result value

Each bit of the result is set to the result of the bitwise operation ! (a & b) of the

corresponding bits of a and b. For 0 <=1 < 128, bit i of the result is set to 0 only if

the ith bit of a and b are 1.

vec_nearbyint

Purpose

Returns a vector that contains the rounded values of the corresponding elements of

the given vector.

Syntax

d=vec_nearbyint(a)

Chapter 6. Compiler built-in functions

305

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d a

vector float vector float
vector double vector double

Result value

Each element of the result contains the value of the corresponding element of a,
rounded to the nearest representable floating-point integer, using IEEE
round-to-nearest rounding. When an input element value is between two integer
values, the result value with the largest absolute value is selected.

Related reference:

[vec_round” on page 319

vec_neg

Purpose

Returns a vector containing the negated value of the corresponding elements in the
given vector.

Note: For vector signed long long, this function emulates the operation.

Syntax

d=vec_neg(a)
Result and argument types

The following table describes the types of the returned value and the function

arguments.

d a

vector signed char vector signed char
vector signed short vector signed short
vector signed int vector signed int
vector signed long long vector signed long long
vector float vector float

vector double vector double

Result value

This function multiplies the value of each element in the given vector by -1.0 and
then assigns the result to the corresponding elements in the result vector.

306 XLC/C++: Compiler Reference for Little Endian Distributions

vec_nmadd

Purpose

Returns a vector containing the results of performing a negative multiply-add
operation on the given vectors.

Syntax

d=vec_nmadd(a, b, c)
Result and argument types

The following table describes the types of the returned value and the function
arguments.

d a b C

vector double vector double vector double vector double

vector float vector float vector float vector float

Result value

The value of each element of the result is the product of the corresponding
elements of a and b, added to the corresponding elements of ¢, and then
multiplied by -1.0.

vec_nmsub

Purpose

Returns a vector containing the results of performing a negative multiply-subtract
operation on the given vectors.

Syntax

d=vec_nmsub(a, b, c)
Result and argument types

The following table describes the types of the returned value and the function
arguments.

d a b c

vector float

vector float

vector float

vector float

vector double

vector double

vector double

vector double

Result value

The value of each element of the result is the product of the corresponding
elements of a and b, subtracted from the corresponding element of c.

Chapter 6. Compiler built-in functions

307

vec_nor

Purpose

Performs a bitwise NOR of the given vectors.

Syntax

d=vec_nor(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d

a

b

vector bool char

vector bool char

vector bool char

vector signed char

vector bool char

vector signed char

vector signed char

vector signed char

vector bool char

vector unsigned char

vector bool char

vector unsigned char

vector unsigned char

vector unsigned char

vector bool char

vector bool short

vector bool short

vector vector bool short

vector signed short

vector bool short

vector signed short

vector signed short

vector signed short

vector bool short

vector unsigned short

vector bool short

vector unsigned short

vector unsigned short

vector unsigned short

vector bool short

vector bool int

vector bool int

vector bool int

vector signed int

vector bool int

vector signed int

vector signed int

vector signed int

vector bool int

vector unsigned int

vector bool int

vector unsigned int

vector unsigned int

vector unsigned int

vector bool int

vector bool long long

vector bool long long

vector bool long long

vector signed long long

vector signed long long

vector signed long long

vector unsigned long long

vector unsigned long long

vector unsigned long long

vector float

vector bool int

vector float

vector float

vector bool int

vector double

vector double

vector double

Result value

The result is the bitwise NOR of a and b.

308 XL C/C++: Compiler Reference for Little Endian Distributions

vec_or

Purpose

Performs a bitwise OR of the given vectors.

Syntax

d=vec_or(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d

a

b

vector bool char

vector bool char

vector bool char

vector signed char

vector bool char

vector signed char

vector signed char

vector signed char

vector bool char

vector unsigned char

vector bool char

vector unsigned char

vector unsigned char

vector unsigned char

vector bool char

vector bool short

vector bool short

vector vector bool short

vector signed short

vector bool short

vector signed short

vector signed short

vector signed short

vector bool short

vector unsigned short

vector bool short

vector unsigned short

vector unsigned short

vector unsigned short

vector bool short

vector bool int

vector bool int

vector bool int

vector signed int

vector bool int

vector signed int

vector signed int

vector signed int

vector bool int

vector unsigned int

vector bool int

vector unsigned int

vector unsigned int

vector unsigned int

vector bool int

vector bool long long

vector bool long long

vector bool long long

vector signed long long

vector bool long long

vector signed long long

vector signed long long

vector signed long long

vector bool long long

vector unsigned long long

vector bool long long

vector unsigned long long

vector unsigned long long

vector unsigned long long

vector bool long long

Chapter 6. Compiler built-in functions

309

d

a

b

vector float

vector bool int

vector float

vector float

vector bool int

vector float

vector double

vector bool long long

vector double

vector double

vector bool long long

vector double

Result value

The result is the bitwise OR of a and b.

vec_orc

Purpose

Performs a bitwise OR-with-complement operation of the input vectors.

This built-in function is valid only when -qarch is set to target POWERS

processors.

Syntax

d=vec_orc(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Table 39. Types of the returned value and function arguments

d

a

b

vector unsigned long long

vector unsigned long long

vector unsigned long long

vector signed long long

vector signed long long

vector signed long long

vector unsigned long long

vector unsigned long long

vector bool long long

vector signed long long

vector signed long long

vector bool long long

vector unsigned long long

vector bool long long

vector unsigned long long

vector signed long long

vector bool long long

vector signed long long

vector bool long long

vector bool long long

vector bool long long

vector unsigned int

vector unsigned int

vector unsigned int

vector signed int

vector signed int

vector signed int

vector unsigned int

vector unsigned int

vector bool int

vector signed int

vector signed int

vector bool int

vector unsigned int

vector bool int

vector unsigned int

vector signed int

vector bool int

vector signed int

vector bool int

vector bool int

vector bool int

vector unsigned short

vector unsigned short

vector unsigned short

vector signed short

vector signed short

vector signed short

310 XL C/C++: Compiler Reference for Little Endian Distributions

Table 39. Types of the returned value and function arguments (continued)

d

a

b

vector unsigned short

vector unsigned short

vector bool short

vector signed short

vector signed short

vector bool short

vector unsigned short

vector bool short

vector unsigned short

vector signed short

vector bool short

vector signed short

vector bool short

vector bool short

vector bool short

vector unsigned char

vector unsigned char

vector unsigned char

vector signed char

vector signed char

vector signed char

vector unsigned char

vector unsigned char

vector bool char

vector signed char

vector signed char

vector bool char

vector unsigned char

vector bool char

vector unsigned char

vector signed char

vector bool char

vector signed char

vector bool char

vector bool char

vector bool char

vector float

vector float

vector float

vector float

vector bool

vector float

vector float

vector float

vector bool int

vector double

vector double

vector double

vector double

vector bool long long

vector double

vector double

vector double

vector bool long long

Result value

Each bit of the result is set to the result of the bitwise operation (a | ~b) of the
corresponding bits of a and b. For 0 <= i < 128, bit i of the result is set to 1 only if
the ith bit of a is 1 or the ith bit of b is 0.

vec_pack

Purpose

Packs information from each element of two vectors into the result vector.

Syntax
d=vec_pack(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d

a

b

vector signed char

vector signed short

vector signed short

vector unsigned char

vector unsigned short

vector unsigned short

vector signed short

vector signed int

vector signed int

vector unsigned short

vector unsigned int

vector unsigned int

vector signed long

vector signed long long

vector signed long long

Chapter 6. Compiler built-in functions

d

a

b

vector unsigned long

vector unsigned long long

vector unsigned long long

vector bool long long

vector bool long long

vector bool long long

Result value

The value of each element of the result vector is taken from the low-order half of
the corresponding element of the result of concatenating a and b.

Related reference:

[-maltivec (-galtivec)” on page 100|

Related information:

[Vector element order toggling]|

vec_packs

Purpose

Packs information from each element of two vectors into the result vector, using

saturated values.

Syntax

d=vec_packs(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d

a

b

vector signed char

vector signed short

vector signed short

vector unsigned char

vector unsigned short

vector unsigned short

vector signed short

vector signed int

vector signed int

vector unsigned short

vector unsigned int

vector unsigned int

vector signed int

vector signed long long

vector signed long long

vector unsigned int

vector unsigned long long

vector unsigned long long

Result value

The value of each element of the result vector is the saturated value of the
corresponding element of the result of concatenating a and b.

vec_packsu

Purpose

Packs information from each element of two vectors into the result vector by using

saturated values.

Syntax

d=vec_packsu(a, b)

312 XL C/C++: Compiler Reference for Little Endian Distributions

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d

a

b

vector unsigned char

vector signed short

vector signed short

vector unsigned short

vector unsigned short

vector unsigned short

vector signed int

vector signed int

vector unsigned int

vector unsigned int

vector unsigned int

vector signed long long

vector signed long long

vector unsigned long long

vector unsigned long long

Result value

The value of each element of the result vector is the saturated value of the
corresponding element of the result of concatenating a and b.

vec_perm

Purpose

Returns a vector that contains some elements of two vectors, in the order specified

by a third vector.

Syntax

d=vec_perm(a, b, c)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Chapter 6. Compiler built-in functions

313

d a b c

vector signed int vector signed int vector signed int

vector unsigned int |vector unsigned int |vector unsigned int

vector bool int vector bool int vector bool int

vector signed short |vector signed short |vector signed short

vector unsigned vector unsigned vector unsigned

short short short

vector bool short vector bool short vector bool short

vector pixel vector pixel vector pixel

vector signed char |vector signed char |vector signed char |Vector unsigned
vector unsigned vector unsigned vector unsigned char

char char char

vector bool char vector bool char vector bool char

vector float vector float vector float

vector double vector double vector double

vector signed long |vector signed long |vector signed long

long long long
vector unsigned vector unsigned vector unsigned
long long long long long Tong

Result value

Each byte of the result is selected by using the least significant five bits of the
corresponding byte of ¢ as an index into the concatenated bytes of a and b.

Related reference:

[-maltivec (-galtivec)” on page 100|

Related information:

[Vector element order toggling|

vec_popcnt
Purpose

Computes the population count (number of set bits) in each element of the input.

Syntax

d=vec_popcnt(a)
Result and argument types

The following table describes the types of the returned value and the function

arguments.

d a

vector unsigned char vector signed char
vector unsigned char vector unsigned char
vector unsigned short vector signed short
vector unsigned short vector unsigned short

314 XL C/C++: Compiler Reference for Little Endian Distributions

d

a

vector unsigned int

vector signed int

vector unsigned int

vector unsigned int

vector unsigned long long

vector signed long long

vector unsigned long long

vector unsigned long long

Result value

Each element of the result is set to the number of set bits in the corresponding

element of the input.

vec_promote

Purpose

Returns a vector with a in element position b.

Syntax

d=vec_promote(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.
d a b
vector signed char signed char signed int

vector unsigned char

unsigned char

vector signed short

signed short

vector unsigned short

unsigned short

vector signed int

signed int

vector unsigned int

unsigned int

vector signed long long

signed long long

vector unsigned long long

unsigned long

vector float

float

vector double

double

Result value

The result is a vector with a in element position b. This function uses modulo

arithmetic on b to determine the element number. For example, if b is out of range,
the compiler uses b modulo the number of elements in the vector to determine the

element position. The other elements of the vector are undefined.

Related reference:

[-maltivec (-galtivec)” on page 100|

Related information:

[Vector element order toggling]

Chapter 6. Compiler built-in functions

vec_re

Purpose

Returns a vector containing estimates of the reciprocals of the corresponding
elements of the given vector.

Syntax

d=vec_re(a)
Result and argument types

The following table describes the types of the returned value and the function

arguments.

d a

vector float vector float
vector double vector double

Result value

Each element of the result contains the estimated value of the reciprocal of the
corresponding element of a.

vec_recipdiv
Purpose
Returns a vector that contains the division of each elements of a by the
corresponding elements of b, by performing reciprocal estimates and iterative

refinement on the elements of b.

Syntax

d=vec_recipdiv(a,b)
Result and argument types

The following table describes the types of the returned value and the function

arguments.

d a b

vector float vector float vector float
vector double vector double vector double

Result value

Each element of the result contains the approximate division of each element of a
by the corresponding element of b. Vector reciprocal estimates and iterative
refinement on each element of b are used to improve the accuracy of the
approximation.

Related information:
“vec_re”

316 XL C/C++: Compiler Reference for Little Endian Distributions

[“vec_div” on page 291

vec_revb

Purpose

Returns a vector that contains the bytes of the corresponding element of the

argument in the reverse byte order.

Syntax

d=vec_revb(a)

Result and argument types

The following table describes the types of the returned value and the function

argument.

d

a

The same type as argument a

vector signed char

vector unsigned char

vector signed short

vector unsigned short

vector signed int

vector unsigned int

vector signed long long

vector unsigned long long

vector float

vector double

Result value

Each element of the result contains the bytes of the corresponding element of a in

the reverse byte order.

vec_reve

Purpose

Returns a vector that contains the elements of the argument in the reverse element

order.

Syntax

d=vec_reve(a)

Result and argument types

The following table describes the types of the returned value and the function

argument.

Chapter 6. Compiler built-in functions

317

d a

The same type as argument a vector signed char

vector unsigned char

vector signed short

vector unsigned short

vector signed int

vector unsigned int

vector signed long long

vector unsigned long long

vector float

vector double

Result value

The result contains the elements of a in the reverse element order.

vec_rint
Purpose

Returns a vector by rounding every single-precision or double-precision
floating-point element of the given vector to a floating-point integer.

Syntax

d=vec_rint(a)
Result and argument types

The following table describes the types of the returned value and the function

arguments.

d a

vector float vector float
vector double vector double

Related information:

[“vec_roundc” on page 319

vec_rl
Purpose

Rotates each element of a vector left by a given number of bits.

Syntax
d=vec_rl(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

318 XL C/C++: Compiler Reference for Little Endian Distributions

d

a

b

vector signed char

vector signed char

vector signed char

vector unsigned char

vector unsigned char

vector unsigned char

vector signed short

vector signed short

vector signed short

vector unsigned short

vector unsigned short

vector unsigned short

vector signed int

vector signed int

vector signed int

vector unsigned int

vector unsigned int

vector unsigned int

vector signed long long

vector signed long long

vector signed long long

vector unsigned long long

vector unsigned long long

vector unsigned long long

Result value

Each element of the result is obtained by rotating the corresponding element of a
left by the number of bits specified by the corresponding element of b.

vec_round
Purpose

Returns a vector containing the rounded values of the corresponding elements of
the given vector.

Syntax

d=vec_round(a)
Result and argument types

The following table describes the types of the returned value and the function
arguments.

d a

vector float vector float

vector double vector double

Result value

Each element of the result contains the value of the corresponding element of a,
rounded to the nearest representable floating-point integer, using IEEE
round-to-nearest rounding.

vec_roundc
Purpose

Returns a vector by rounding every single-precision or double-precision
floating-point element in the given vector to integer.

Syntax

d=vec_roundc(a)

Chapter 6. Compiler built-in functions 319

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d a

vector float vector float
vector double vector double

Related information:

[‘vec_rint” on page 318|

vec_roundm
Purpose

Returns a vector containing the largest representable floating-point integer values
less than or equal to the values of the corresponding elements of the given vector.

Note: vec_roundm is another name for vec_floor. For details, see
page 294.

Syntax

d=vec_roundm(a)
Result and argument types

The following table describes the types of the returned value and the function

arguments.

d a

vector float vector float
vector double vector double

vec_roundp
Purpose

Returns a vector containing the smallest representable floating-point integer values
greater than or equal to the values of the corresponding elements of the given
vector.

Note: vec_roundp is another name for vec_ceil. For details, see|“vec_ceil” on page]

Syntax

d=vec_roundp(a)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

320 XL C/C++: Compiler Reference for Little Endian Distributions

d a

vector float vector float

vector double vector double
vec_roundz

Purpose

Returns a vector containing the truncated values of the corresponding elements of
the given vector.

Note: vec_roundz is another name for vec_trunc. For details, see [“vec_trunc” o
page 332.

Syntax

d=vec_roundz(a)
Result and argument types

The following table describes the types of the returned value and the function

arguments.

d a

vector float vector float
vector double vector double

Result value

Each element of the result contains the value of the corresponding element of a,
truncated to an integral value.

vec_rsqrt

Purpose

Returns a vector that contains estimates of the reciprocal square roots of the
corresponding elements of the given vector.

Syntax

d=vec_rsqrt(a)
Result and argument types

The following table describes the types of the returned value and the function

arguments.

d a

vector float vector float
vector double vector double

Chapter 6. Compiler built-in functions 321

Result value

Each element of the result contains the reciprocal square root of the corresponding
element of a by using the vector reciprocal square root estimate instruction and
iterative refinement.

Related reference:

vec_rsqrte

Purpose

Returns a vector containing estimates of the reciprocal square roots of the
corresponding elements of the given vector.

Syntax

d=vec_rsqrte(a)
Result and argument types

The following table describes the types of the returned value and the function

arguments.

d a

vector float vector float
vector double vector double

Result value

Each element of the result contains the estimated value of the reciprocal square
root of the corresponding element of a.

vec_sel
Purpose
Returns a vector containing the value of either a or b depending on the value of c.

Syntax

d=vec_sel(a, b, c)
Result and argument types

The following table describes the types of the returned value and the function

arguments.

d a b C

vector bool char vector bool char vector bool char vector bool char
vector unsigned char

vector signed char vector signed char vector signed char vector bool char
vector unsigned char

322 XL C/C++: Compiler Reference for Little Endian Distributions

d

a

b

C

vector unsigned char

vector unsigned char

vector unsigned char

vector bool char

vector unsigned char

vector bool short

vector bool short

vector bool short

vector bool short

vector unsigned short

vector signed short

vector signed short

vector signed short

vector bool shot

vector unsigned short

vector unsigned short

vector unsigned short

vector unsigned short

vector bool short

vector unsigned short

vector bool int

vector bool int

vector bool int

vector bool int

vector unsigned int

vector signed int

vector signed int

vector signed int

vector bool int

vector unsigned int

vector unsigned int

vector unsigned int

vector unsigned int

vector bool int

vector unsigned int

vector bool long long

vector bool long long

vector bool long long

vector bool long long

vector unsigned long
long

vector signed long
long

vector signed long
long

vector signed long
long

vector bool long long

vector unsigned long
long

vector unsigned long
long

vector unsigned long
long

vector unsigned long
long

vector bool long long

vector unsigned long
long

vector float

vector float

vector float

vector bool int

vector unsigned int

vector double

vector double

vector double

vector bool long long

vector unsigned long
long

Result value

Each bit of the result vector has the value of the corresponding bit of a if the
corresponding bit of ¢ is 0, or the value of the corresponding bit of b otherwise.

Purpose

Performs a left shift for each element of a vector.

Syntax
d=vec_s1(a, b)

Chapter 6. Compiler built-in functions

323

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d

a

b

vector signed char

vector signed char

vector unsigned char

vector unsigned char

vector unsigned char

vector unsigned char

vector signed short

vector signed short

vector unsigned short

vector unsigned short

vector unsigned short

vector unsigned short

vector signed int

vector signed int

vector unsigned int

vector unsigned int

vector unsigned int

vector unsigned int

vector signed long long

vector signed long long

vector unsigned long long

vector unsigned long long

vector unsigned long long

vector unsigned long long

Result value

Each element of the result vector is the result of left shifting the corresponding
element of a by the number of bits specified by the value of the corresponding
element of b, modulo the number of bits in the element. The bits that are shifted

out are replaced by zeroes.

vec_sldw

Purpose

Shift Left Double by Word Immediate

Returns a vector by concatenating a and b, and then left-shifting the result vector
by multiples of 4 bytes. c specifies the offset for the shifting operation.

Syntax

d=vec_sldw(a, b, c)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

324 XL C/C++: Compiler Reference for Little Endian Distributions

d

a

b

vector bool char

vector bool char

vector bool char

vector signed char

vector signed char

vector signed char

vector unsigned char

vector unsigned char

vector unsigned char

vector bool short

vector bool short

vector bool short

vector signed short

vector signed short

vector signed short

vector unsigned short

vector unsigned short

vector unsigned short

vector bool int

vector bool int

vector bool int

vector signed int

vector signed int

vector signed int

vector unsigned int

vector unsigned int

vector unsigned int

vector bool long long

vector bool long long

vector bool long long

vector signed long
long

vector signed long
long

vector signed long
long

vector unsigned long
long

vector unsigned long
long

vector unsigned long
long

vector float

vector float

vector float

vector double

vector double

vector double

Result value

After left-shifting the concatenated a and b by multiples of 4 bytes specified by c,

the function takes the four leftmost 4-byte values and forms the result vector.

vec_splat

Purpose

Returns a vector that has all of its elements set to a given value.

Syntax
d=vec_splat(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d a b
vector bool char vector bool char 0-15
vector signed char vector signed char 0-15
vector unsigned char vector unsigned char 0-15
vector bool short vector bool short 0-7
vector signed short vector signed short 0-7
vector unsigned short vector unsigned short 0-7
vector bool int vector bool int 0-3
vector signed int vector signed int 0-3
vector unsigned int vector unsigned int 0-3

Chapter 6. Compiler built-in functions

325

d

a

vector bool long long

vector bool long long

vector signed long long

vector unsigned long long

vector unsigned long long

vector float

vector float

vector double

b
0
vector signed long long 0-
0
0
0

vector double

Result value

The value of each element of the result is the value of the element of a specified by

b.
Related reference:

[“-maltivec (-galtivec)” on page 100|

Related information:

[Vector element order toggling]

vec_splats

Purpose

Returns a vector of which the value of each element is set to a.

Syntax

d=vec_splats(a)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d

a

vector signed char

signed char

vector unsigned char

unsigned char

vector signed short

signed short

vector unsigned short

unsigned short

vector signed int

signed int

vector unsigned int

unsigned int

vector signed long long

signed long long

vector unsigned long long

unsigned long long

vector float

float

vector double

double

vec_sqrt
Purpose

Returns a vector containing the square root of each element in the given vector.

326 XL C/C++: Compiler Reference for Little Endian Distributions

Syntax
d=vec_sqrt(a)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

d a

vector float vector float

vector double vector double

vec_sr
Purpose

Performs a right shift for each element of a vector.

Syntax

d=vec_sr(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d

a

b

vector signed char

vector signed char

vector unsigned char

vector unsigned char

vector unsigned char

vector unsigned char

vector signed short

vector signed short

vector unsigned short

vector unsigned short

vector unsigned short

vector unsigned short

vector signed int

vector signed int

vector unsigned int

vector unsigned int

vector unsigned int

vector unsigned int

vector signed long long

vector signed long long

vector unsigned long long

vector unsigned long long

vector unsigned long long

vector unsigned long long

Result value

Each element of the result vector is the result of right shifting the corresponding
element of a by the number of bits specified by the value of the corresponding
element of b, modulo the number of bits in the element. The bits that are shifted

out are replaced by zeroes.

vec_sSsra

Purpose

Performs an algebraic right shift for each element of a vector.

Syntax

d=vec_sra(a, b)

Chapter 6. Compiler built-in functions

327

vec_st

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d

a

b

vector signed char

vector signed char

vector unsigned char

vector unsigned char

vector unsigned char

vector unsigned char

vector signed short

vector signed short

vector unsigned short

vector unsigned short

vector unsigned short

vector unsigned short

vector signed int

vector signed int

vector unsigned int

vector unsigned int

vector unsigned int

vector unsigned int

vector signed long long

vector signed long long

vector unsigned long long

vector unsigned long long

vector unsigned long long

vector unsigned long long

Result value

Each element of the result vector is the result of algebraically right shifting the
corresponding element of a by the number of bits specified by the value of the
corresponding element of b, modulo the number of bits in the element. The bits
that are shifted out are replaced by copies of the most significant bit of the element

of a.

Purpose

Stores a vector to memory at the given address.

Syntax

vec_st(a, b, c)

Result and argument types

The vec_st function returns nothing.b is added to the address of ¢, and the sum is
truncated to a multiple of 16 bytes. The value of a is then stored into this memory

address.

The following table describes the types of the function arguments.

Table 40. Data type of function returned value and arguments

a

b

C

vector unsigned int

vector signed int

int

unsigned long*

signed long*

328 XL C/C++: Compiler Reference for Little Endian Distributions

Table 40. Data type of function returned value and arguments (continued)

vector pixel

vector unsigned int

vector signed int

vector bool int

vector float

a b c

vector unsigned char vector unsigned char*
unsigned char*

vector signed char vector signed char*
signed char*

vector bool char vector bool char*
unsigned char*
signed char*

vector unsigned short vector unsigned short*
unsigned short*

vector signed short vector signed short*
signed short*

vector bool short vector bool short*
unsigned short*

long

short*

vector pixel*

unsigned short*

short*

vector unsigned int*

unsigned int*

vector signed int*

signed int*

vector bool int*

unsigned int*

int*

vector float*

float*

Related reference:

[-maltivec (-galtivec)” on page 100|

Related information:

[Vector element order toggling]|

vec_sub
Purpose

Returns a vector containing the result of subtracting each element of b from the
corresponding element of a.

This function emulates the operation on long long vectors.

Syntax

d=vec_sub(a, b)

Chapter 6. Compiler built-in functions 329

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d

a

b

vector signed char

vector signed char

vector signed char

vector unsigned char

vector unsigned char

vector unsigned char

vector signed short

vector signed short

vector signed short

vector unsigned short

vector unsigned short

vector unsigned short

vector signed int

vector signed int

vector signed int

vector unsigned int

vector unsigned int

vector unsigned int

vector signed long long

vector signed long long

vector signed long long

vector unsigned long long

vector unsigned long long

vector unsigned long long

vector float

vector float

vector float

vector double

vector double

vector double

Result value

The value of each element of the result is the result of subtracting the value of the
corresponding element of b from the value of the corresponding element of a. The
arithmetic is modular for integer vectors.

vec_sub_u128
Purpose

Subtracts unsigned quadword values.
The function operates on vectors as 128-bit unsigned integers.

Syntax
d=vec_sub_ul28(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

d a b

vector unsigned char vector unsigned char vector unsigned char

Result value

Returns low 128 bits of a - b.

330 XLC/C++: Compiler Reference for Little Endian Distributions

vec_subc_ui28
Purpose

Gets the carry bit of the 128-bit subtraction of two quadword values.
The function operates on vectors as 128-bit unsigned integers.

Syntax
d=vec_subc_ul28(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.
d a b
vector unsigned char vector unsigned char vector unsigned char

Result value

Returns the carry out of a - b.

vec_sube_u128
Purpose

Subtracts unsigned quadword values with carry bit from previous operation.

The function operates on vectors as 128-bit unsigned integers.

Syntax
d=vec_sube ul28(a, b, c)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

d a b C

vector unsigned char |vector unsigned char |vector unsigned char |vector unsigned char

Result value

Returns low 128 bits of a - b - (¢ & 1).

vec_subec ui128
Purpose

Gets the carry bit of the 128-bit subtraction of two quadword values with carry bit
from the previous operation.

The function operates on vectors as 128-bit unsigned integers.

Chapter 6. Compiler built-in functions 331

Syntax

d=vec_subec_ul28(a, b, c)
Result and argument types

The following table describes the types of the returned value and the function
arguments.

d a b c

vector unsigned char |vector unsigned char |vector unsigned char |vector unsigned char

Result value
Returns the carry out of a - b - (c & 1).
vec_trunc

Purpose

Returns a vector containing the truncated values of the corresponding elements of
the given vector.

Note: vec_trunc is another name for vec_roundz. For details, see [“vec_roundz” on|

vec_unpackh
Purpose

Unpacks the most significant half of a vector into a vector with larger elements.

Syntax

d=vec_unpackh(a)
Result and argument types

The following table describes the types of the returned value and the function

arguments.

d a

vector signed short vector signed char
vector signed int vector signed short
vector signed long long vector signed int
vector bool long long vector bool int

Result value

The value of each element of the result is the value of the corresponding element
of the most significant half of a.

Related reference:

[-maltivec (-galtivec)” on page 100|

Related information:

332 XL C/C++: Compiler Reference for Little Endian Distributions

[Vector element order toggling]

vec_unpackl
Purpose

Unpacks the least significant half of a vector into a vector with larger elements.

Syntax

d=vec_unpackl(a)
Result and argument types

The following table describes the types of the returned value and the function
arguments.

d a

vector signed short vector signed char

vector signed int vector signed short

vector signed long long vector signed int

vector bool int

vector bool long long

Result value

The value of each element of the result is the value of the corresponding element
of the least significant half of a.

Related reference:

[“-maltivec (-galtivec)” on page 100|

Related information:

[Vector element order toggling|

vec_vclz
Purpose

Computes the count of leading zero bits of each element of the given vector.

Syntax

d=vec_vclz(a)
Result and argument types

The following table describes the types of the returned value and the function
arguments.

d a

vector unsigned char

vector unsigned char

vector signed char

vector signed char

vector unsigned short

vector unsigned short

vector signed short

vector signed short

vector unsigned int

vector unsigned int

Chapter 6. Compiler built-in functions

333

d a
vector signed int vector signed int

vector unsigned long long vector unsigned long long
vector signed long long vector signed long long

Result value

Each element of the result is set to the number of leading zeros of the
corresponding element of a.

Related reference:

[“vec_cntlz” on page 287]

vec_vgbbd
Purpose

Performs a gather-bits-by-bytes operation on the given vector.

Syntax
d=vec_vgbbd(a)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d a

vector unsigned char vector unsigned char
vector signed char vector signed char

Result value
Each doubleword element of the result is set as follows:

Let x(i) (0 <= i < 8) denote the byte elements of the corresponding input
doubleword element, with x(7) as the most significant byte. For each pair of i and
Jj (0<=1<8,0<=] <8), the jth bit of the ith byte element of the result is set to
the value of the ith bit of the jth byte element of the input.

Related reference:
“vec_gbb” on page 294|

vec xl

Purpose

Loads a 16-byte vector from the memory address specified by the displacement a
and the pointer b.

Syntax

d=vec_x1(a, b)

334 XL C/C++: Compiler Reference for Little Endian Distributions

Result and argument types

The following table describes the types of the function returned value and the
function arguments.

Table 41. Data type of function returned value and arguments

d a b

vector signed char long signed char *
vector unsigned char unsigned char *
vector signed short signed short *
vector unsigned short unsigned short *
vector signed int signed int *
vector unsigned int unsigned int *
vector signed long long signed long long *
vector unsigned long long unsigned long long *
vector float float *

vector double double *

Result value

vec_xl adds the displacement provided by a to the address provided by b to obtain
the effective address for the load operation. It does not truncate the effective
address to a multiple of 16 bytes.

The order of elements in the function result is big endian when -qaltivec=be is in
effect. Otherwise, the order is little endian.

Related reference:

[-maltivec (-galtivec)” on page 100|

Related information:

[Vector element order toggling]

vec_xl_be
Purpose

Loads a 16-byte vector from the memory address specified by the displacement a
and the pointer b.

Syntax
d=vec_x1_be(a, b)

Result and argument types

The following table describes the types of the function returned value and the
function arguments.

Chapter 6. Compiler built-in functions 335

Table 42. Data type of function returned value and arguments

d a b

vector signed char long signed char *
vector unsigned char unsigned char *
vector signed short signed short *
vector unsigned short unsigned short *
vector signed int signed int *
vector unsigned int unsigned int *
vector signed long long signed long long *
vector unsigned long long unsigned long long *
vector float float *

vector double double *

Result value

vec_xI_be adds the displacement provided by a to the address provided by b to
obtain the effective address for the load operation. It does not truncate the effective
address to a multiple of 16 bytes.

The order of elements in the function result is big endian regardless of the
-maltivec (-galtivec) option in effect.

Related reference:

[-maltivec (-galtivec)” on page 100|

Related information:

[Vector element order toggling]

vec_xld2
Purpose

Loads a 16-byte vector from two 8-byte elements at the memory address specified
by the displacement a and the pointer b.

Syntax
d=vec_x1d2(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

336 XL C/C++: Compiler Reference for Little Endian Distributions

d a b

vector signed char long signed char *
vector unsigned char unsigned char *
vector signed short signed short *
vector unsigned short unsigned short *
vector signed int signed int *
vector unsigned int unsigned int *
vector signed long long signed long long *
vector unsigned long long unsigned long long *
vector float float *

vector double double *

Result value

This function adds the displacement and the pointer R-value to obtain the address
for the load operation. It does not truncate the effective address to a multiple of 16
bytes.

Related reference:

[-maltivec (-galtivec)” on page 100|

Related information:

[Vector element order toggling|

vec_xlds
Purpose

Loads an 8-byte element from the memory address specified by the displacement a
and the pointer b and then splats it onto a vector.

Syntax
d=vec_x1ds(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d a b

vector signed long long long signed long long *
vector unsigned long long long unsigned long long *
vector double long double *

Result value
This function adds the displacement and the pointer R-value to obtain the address

for the load operation. It does not truncate the effective address to a multiple of 16
bytes.

Chapter 6. Compiler built-in functions 337

vec_ xlw4

Purpose

Loads a 16-byte vector from four 4-byte elements at the memory address specified
by the displacement a and the pointer b.

Syntax

d=vec_x1w4(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d

b

vector signed char

vector unsigned char

vector signed short

vector unsigned short

vector signed int

vector unsigned int

vector float

long

signed char *

unsigned char *

signed short *

unsigned short *

signed int *

unsigned int *

float *

Result value

This function adds the displacement and the pointer R-value to obtain the address
for the load operation. It does not truncate the effective address to a multiple of 16

bytes.
Related reference:

[“-maltivec (-galtivec)” on page 100|

Related information:

[Vector element order toggling|

vec_Xor

Purpose

Performs a bitwise XOR of the given vectors.

Syntax

d=vec_xor(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

d

a

b

vector bool char

vector bool char

vector bool char

338 XL C/C++: Compiler Reference for Little Endian Distributions

d

a

b

vector signed char

vector bool char

vector signed char

vector signed char

vector signed char

vector bool char

vector unsigned char

vector bool char

vector unsigned char

vector unsigned char

vector unsigned char

vector bool char

vector bool short

vector bool short

vector vector bool short

vector signed short

vector bool short

vector signed short

vector signed short

vector signed short

vector bool short

vector unsigned short

vector bool short

vector unsigned short

vector unsigned short

vector unsigned short

vector bool short

vector bool int

vector bool int

vector bool int

vector signed int

vector bool int

vector signed int

vector signed int

vector signed int

vector bool int

vector unsigned int

vector bool int

vector unsigned int

vector unsigned int

vector unsigned int

vector bool int

vector bool long long

vector bool long long

vector bool long long

vector signed long long

vector bool long long

vector signed long long

vector signed long long

vector signed long long

vector bool long long

vector unsigned long long

vector bool long long

vector unsigned long long

vector unsigned long long

vector unsigned long long

vector bool long long

vector float

vector bool int

vector float

vector float

vector bool int

vector float

vector double

vector bool long long

vector double

vector double

vector bool long long

vector double

Result value

The result is the bitwise XOR of a and b.

Chapter 6. Compiler built-in functions

339

vec_xst

Purpose

Stores the elements of the 16-byte vector a to the effective address obtained by
adding the displacement provided in b with the address provided by c. The
effective address is not truncated to a multiple of 16 bytes.

Syntax

d=vec_xst(a, b, c)
Result and argument types

The following table describes the types of the function returned value and the
function arguments.

Table 43. Data type of function returned value and arguments

d a b C

void vector signed char long signed char *
vector unsigned char unsigned char *
vector signed short signed short *
vector unsigned short unsigned short *
vector signed int signed int *
vector unsigned int unsigned int *
vector signed long signed long long *
long
vector unsigned long unsigned long long *
long
vector float float *
vector double double *

Related reference:

[“-maltivec (-galtivec)” on page 100|

Related information:

[Vector element order toggling]

vec_xst_be
Purpose
Stores the elements of the 16-byte vector a in big endian element order to the
effective address obtained by adding the displacement provided in b with the
address provided by c. The effective address is not truncated to a multiple of 16

bytes.

Syntax

d=vec_xst_be(a, b, c)

340 XL C/C++: Compiler Reference for Little Endian Distributions

Result and argument types

The following table describes the types of the function returned value and the
function arguments.

Table 44. Data type of function returned value and arguments

d a b c

void vector signed char long signed char *
vector unsigned char unsigned char *
vector signed short signed short *
vector unsigned short unsigned short *
vector signed int signed int *
vector unsigned int unsigned int *
vector signed long signed long long *
long
vector unsigned long unsigned long long *
long
vector float float *
vector double double *

Related reference:

[“-maltivec (-qaltivec)” on page 100|

Related information:

[Vector element order toggling|

vec_xstd2
Purpose

Puts a 16-byte vector a as two 8-byte elements to the memory address specified by
the displacement b and the pointer c.

Syntax
d=vec_xstd2(a, b, c)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Chapter 6. Compiler built-in functions 341

d a b c

void vector signed char long signed char *
vector unsigned char unsigned char *
vector signed short signed short *
vector unsigned short unsigned short *
vector signed int signed int *
vector unsigned int unsigned int *
vector signed long signed long long *
long
vector unsigned long unsigned long long *
long
vector float float *
vector double double *
vector pixel signed short * or

unsigned short *

Result value

This function adds the displacement and the pointer R-value to obtain the address
for the store operation. It does not truncate the effective address to a multiple of 16
bytes.

Related reference:

[-maltivec (-galtivec)” on page 100|

Related information:

[Vector element order toggling|

vec_xstw4
Purpose

Puts a 16-byte vector a to four 4-byte elements at the memory address specified by
the displacement b and the pointer c.

Syntax

d=vec_xstw4(a, b, c)
Result and argument types

The following table describes the types of the returned value and the function
arguments.

342 XL C/C++: Compiler Reference for Little Endian Distributions

d a b c

void vector signed char long signed char *
vector unsigned char unsigned char *
vector signed short signed short *
vector unsigned short unsigned short *
vector signed int signed int *
vector unsigned int unsigned int *
vector float float *
vector pixel signed short * or

unsigned short *

Result value

This function adds the displacement and the pointer R-value to obtain the address
for the store operation. It does not truncate the effective address to a multiple of 16
bytes.

Related reference:

[-maltivec (-galtivec)” on page 100|

Related information:

[Vector element order toggling]|

GCC atomic memory access built-in functions (IBM extension)

This section provides reference information for atomic memory access built-in
functions whose behavior corresponds to that provided by GNU Compiler
Collection (GCC). In a program with multiple threads, you can use these functions
to atomically and safely modify data in one thread without interference from other
threads.

These built-in functions manipulate data atomically, regardless of how many
processors are installed in the host machine.

In the prototype of each function, the parameter types T, U, and V can be of
pointer or integral type. U and V can also be of real floating-point type, but only
when T is of integral type. The following tables list the integral and floating-point
types that are supported by these built-in functions.

Table 45. Supported integral data types

signed char unsigned char

short int unsigned short int
int unsigned int

long int unsigned Tong int
long Tong int unsigned Tong long int
bool _Bool

Table 46. Supported floating-point data types
float

Chapter 6. Compiler built-in functions 343

Table 46. Supported floating-point data types (continued)
double

long double

In the prototype of each function, the ellipsis (...) represents an optional list of
parameters. XL C/C++ ignores these optional parameters and protects all globally
accessible variables.

The GCC atomic memory access built-in functions are grouped into the following
categories.

Atomic lock, release, and synchronize functions

__sync_lock_test_and_set
Purpose

This function atomically assigns the value of __ v to the variable that _ p points to.
An acquire memory barrier is created when this function is invoked.
Prototype

T __sync_lock_test_and_set (T* _p, U _v, ...);

Parameters

_bp
The pointer of the variable that is to be set.

v
The value to set to the variable that __p points to.

Return value

The function returns the initial value of the variable that __p points to.

__sync_lock_release
Purpose

This function releases the lock acquired by the _ sync_lock_test_and_set function,
and assigns the value of zero to the variable that __p points to.

A release memory barrier is created when this function is invoked.
Prototype
void __sync_lock_release (T* __p, ...);

Parameters

P
The pointer of the variable that is to be set.

344 XL C/C++: Compiler Reference for Little Endian Distributions

__sync_synchronize
Purpose

This function synchronizes data in all threads.
A full memory barrier is created when this function is invoked.
Prototype

void __sync_synchronize ();

Atomic fetch and operation functions

__sync_fetch_and_and
Purpose

This function performs an atomic bitwise AND operation on the variable _ v with
the variable that __p points to. The result is stored in the address that is specified

by _p.
A full memory barrier is created when this function is invoked.
Prototype

T _sync_fetch_and_and (T* _p, U _ v, ...);

Parameters

—bp
The pointer of a variable on which the bitwise AND operation is to be

performed. The value of this variable is to be changed to the result of the
operation.

v
The variable with which the bitwise AND operation is to be performed.

Return value

The function returns the initial value of the variable that __p points to.

__sync_fetch_and_nand
Purpose

This function performs an atomic bitwise NAND operation on the variable _ v
with the variable that __p points to. The result is stored in the address that is
specified by __p.

A full memory barrier is created when this function is invoked.

Prototype

T _sync_fetch_and_nand (T* _p, U _ v, ...);

Chapter 6. Compiler built-in functions 345

Parameters

—bp
The pointer of a variable on which the bitwise NAND operation is to be
performed. The value of this variable is to be changed to the result of the
operation.

v
The variable with which the bitwise NAND operation is to be performed.

Return value

The function returns the initial value of the variable that _p points to.

__sync_fetch_and_or
Purpose

This function performs an atomic bitwise inclusive OR operation on the variable
__v with the variable that __p points to. The result is stored in the address that is
specified by __p.

A full memory barrier is created when this function is invoked.
Prototype
T __sync_fetch_and_or (T* _p, U _v, ...);

Parameters
P

The pointer of a variable on which the bitwise inclusive OR operation is to be
performed. The value of this variable is to be changed to the result of the
operation.

v
The variable with which the bitwise inclusive OR operation is to be performed.

Return value

The function returns the initial value of the variable that __p points to.

__sync_fetch_and_xor
Purpose

This function performs an atomic bitwise exclusive OR operation on the variable
__v with the variable that __p points to. The result is stored in the address that is
specified by __p.

A full memory barrier is created when this function is invoked.

Prototype

T __sync_fetch_and_xor (T* _p, U _v, ...);

346 XL C/C++: Compiler Reference for Little Endian Distributions

Parameters

—p
The pointer of a variable on which the bitwise exclusive OR operation is to be
performed. The value of this variable is to be changed to the result of the

operation.

v
The variable with which the bitwise exclusive OR operation is to be performed.

Return value

The function returns the initial value of the variable that __p points to.

__sync_fetch_and_add
Purpose

This function atomically adds the value of _ v to the variable that __p points to.
The result is stored in the address that is specified by __p.

A full memory barrier is created when this function is invoked.
Prototype
T __sync_fetch_and_add (T* _p, U _ v, ..);

Parameters

_P
The pointer of a variable to which _ v is to be added. The value of this

variable is to be changed to the result of the add operation.

v
The variable whose value is to be added to the variable that _ p points to.

Return value

The function returns the initial value of the variable that __p points to.

__sync_fetch_and_sub
Purpose

This function atomically subtracts the value of __ v from the variable that _ p
points to. The result is stored in the address that is specified by __p.

A full memory barrier is created when this function is invoked.
Prototype
T __sync_fetch_and_sub (T* _p, U _v, ...);

Parameters

P

The pointer of a variable from which _ v is to be subtracted. The value of this
variable is to be changed to the result of the sub operation.

Chapter 6. Compiler built-in functions 347

v
The variable whose value is to be subtracted from the variable that _ p points
to.

Return value

The function returns the initial value of the variable that __p points to.

Atomic operation and fetch functions

__sync_and_and_fetch
Purpose

This function performs an atomic bitwise AND operation on the variable _ v with
the variable that __p points to. The result is stored in the address that is specified

by _p.
A full memory barrier is created when this function is invoked.
Prototype

T __sync_and_and_fetch (T* _p, U _ v, ...);

Parameters

_p
The pointer of a variable on which the bitwise AND operation is to be

performed. The value of this variable is to be changed to the result of the
operation.

v

The variable with which the bitwise AND operation is to be performed.
Return value

The function returns the new value of the variable that __p points to.

__sync_nand_and_fetch
Purpose

This function performs an atomic bitwise NAND operation on the variable _ v
with the variable that __p points to. The result is stored in the address that is
specified by __p.
A full memory barrier is created when this function is invoked.
Prototype

T __sync_nand_and_fetch (T* _p, U _ v, ...);

Parameters

_bp
The pointer of a variable on which the bitwise NAND operation is to be

performed. The value of this variable is to be changed to the result of the
operation.

348 XL C/C++: Compiler Reference for Little Endian Distributions

_v
The variable with which the bitwise NAND operation is to be performed.

Return value

The function returns the new value of the variable that __p points to.

__sync_or_and_fetch
Purpose

This function performs an atomic bitwise inclusive OR operation on the variable
__v with variable that __p points to. The result is stored in the address that is
specified by __p.

A full memory barrier is created when this function is invoked.
Prototype

T _sync_or_and_fetch (T* _p, U _v, ...);

Parameters

P
The pointer of a variable on which the bitwise inclusive OR operation is to be

performed. The value of this variable is to be changed to the result of the
operation.

v
The variable with which the bitwise inclusive OR operation is to be performed.

Return value

The function returns the new value of the variable that __p points to.

__sync_xor_and_fetch
Purpose

This function performs an atomic bitwise exclusive OR operation on the variable
__v with the variable that __p points to. The result is stored in the address that is
specified by __p.

A full memory barrier is created when this function is invoked.
Prototype

T __sync_xor_and_fetch (T* _p, U _ v, ..);

Parameters

P
The pointer of the variable on which the bitwise exclusive OR operation is to

be performed. The value of this variable is to be changed to the result of the
operation.

v
The variable with which the bitwise exclusive OR operation is to be performed.

Chapter 6. Compiler built-in functions 349

Return value

The function returns the new value of the variable that __p points to.

__sync_add_and_fetch
Purpose

This function atomically adds the value of _ v to the variable that __p points to.
The result is stored in the address that is specified by __p.

A full memory barrier is created when this function is invoked.
Prototype
T __sync_add_and_fetch (T* _p, U _ v, ...);

Parameters

_P
The pointer of a variable to which _ v is to be added. The value of this

variable is to be changed to the result of the add operation.

v
The variable whose value is to be added to the variable that _ p points to.

Return value

The function returns the new value of the variable that __p points to.

__sync_sub_and_fetch
Purpose

This function atomically subtracts the value of __ v from the variable that _ p
points to. The result is stored in the address that is specified by __p.

A full memory barrier is created when this function is invoked.
Prototype
T __sync_sub_and_fetch (I* _p, U _ v, ..);

Parameters

P

The pointer of a variable from which _ v is to be subtracted. The value of this
variable is to be changed to the result of the sub operation.

4

The variable whose value is to be subtracted from the variable that _ p points
to.

Return value

The function returns the new value of the variable that __p points to.

350 XL C/C++: Compiler Reference for Little Endian Distributions

Atomic compare and swap functions

__sync_val_compare_and_swap
Purpose

This function compares the value of __compVal to the value of the variable that _ p
points to. If they are equal, the value of __exchVal is stored in the address that is
specified by __p; otherwise, no operation is performed.

A full memory barrier is created when this function is invoked.
Prototype
T __sync_val_compare_and_swap (T* _p, U __compVal, V __exchVal, ...);

Parameters

—bp
The pointer to a variable whose value is to be compared with.

__compVal
The value to be compared with the value of the variable that __p points to.

__exchVal
The value to be stored in the address that __p points to.

Return value

The function returns the initial value of the variable that __p points to.

__sync_bool_compare_and_swap
Purpose

This function compares the value of __compVal with the value of the variable that
__p points to. If they are equal, the value of __exchVal is stored in the address that
is specified by __p; otherwise, no operation is performed.

A full memory barrier is created when this function is invoked.
Prototype
bool __sync_bool_compare_and_swap (T* _p, U __compVal, V __exchVal, ...);

Parameters

P
The pointer to a variable whose value is to be compared with.

__compVal
The value to be compared with the value of the variable that __p points to.

__exchval
The value to be stored in the address that __p points to.

Return value

If the value of __compVal and the value of the variable that _ p points to are equal,
the function returns true; otherwise, it returns false.

Chapter 6. Compiler built-in functions 351

Miscellaneous built-in functions

Miscellaneous functions are grouped into the following categories:

* |“Optimization-related functions”|

+ ["Move to/from register functions” on page 353|

* [“Memory-related functions” on page 354|

Optimization-related functions

__alignx
Purpose

Allows for optimizations such as automatic vectorization by informing the
compiler that the data pointed to by pointer is aligned at a known compile-time
offset.

Prototype
void __alignx (int alignment, const void* pointer);

Parameters

alignment
Must be a constant integer with a value greater than zero and of a power of
two.

__builtin_expect
Purpose

Indicates that an expression is likely to evaluate to a specified value. The compiler
may use this knowledge to direct optimizations.

Prototype
long _ builtin_expect (long expression, long value);

Parameters

expression
Should be an integral-type expression.

value
Must be a constant literal.

Usage

If the expression does not actually evaluate at run time to the predicted value,
performance may suffer. Therefore, this built-in function should be used with
caution.

__fence
Purpose

Acts as a barrier to compiler optimizations that involve code motion, or reordering

of machine instructions. Compiler optimizations will not move machine
instructions past the location of the _ fence call.

352 XL C/C++: Compiler Reference for Little Endian Distributions

Prototype
void __fence (void);
Examples

This function is useful to guarantee the ordering of instructions in the object code
generated by the compiler when optimization is enabled.

Move to/from register functions

__mftb
Purpose

Move from Time Base
Returns the entire doubleword of the time base register.
Prototype
unsigned long _ mftb (void);
Usage

It is recommended that you insert the __ fence built-in function before and after the
__mftb built-in function.

__mfmsr
Purpose

Move from Machine State Register

Moves the contents of the machine state register (MSR) into bits 32 to 63 of the
designated general-purpose register.

Prototype
unsigned long _ mfmsr (void);
Usage
Execution of this instruction is privileged and restricted to supervisor mode only.

__mfspr
Purpose

Move from Special-Purpose Register
Returns the value of given special purpose register.
Prototype

unsigned long __mfspr (const int registerNumber);

Chapter 6. Compiler built-in functions 353

Parameters

registerNumber
The number of the special purpose register whose value is to be returned. The
registerNumber must be known at compile time.

__mtmsr
Purpose

Move to Machine State Register
Moves the contents of bits 32 to 62 of the designated GPR into the MSR.
Prototype

void __mtmsr (unsigned long value);

Parameters

value
The bitwise OR result of bits 48 and 49 of value is placed into MSR,q. The
bitwise OR result of bits 58 and 49 of value is placed into MSRss. The bitwise
OR result of bits 59 and 49 of value is placed into MSRs,. Bits 32:47, 49:50,
52:57, and 60:62 of value are placed into the corresponding bits of the MSR.

Usage

Execution of this instruction is privileged and restricted to supervisor mode only.

__mtspr
Purpose

Move to Special-Purpose Register
Sets the value of a special purpose register.
Prototype
void __mtspr (const int registerNumber, unsigned long value);

Parameters

registerNumber
The number of the special purpose register whose value is to be set. The
registerNumber must be known at compile time.

value
Must be known at compile time.

Memory-related functions

__alloca
Purpose

Allocates space for an object. The allocated space is put on the stack and freed
when the calling function returns.

354 XL C/C++: Compiler Reference for Little Endian Distributions

Prototype
void* __alloca (size_t size)

Parameters

size
An integer representing the amount of space to be allocated, measured in
bytes.

__builtin_frame_address, __ builtin_return_address
Purpose

Returns the address of the stack frame, or return address, of the current function,
or of one of its callers.

Prototype
void* _ builtin_frame_address (unsigned int level);
void* _ builtin_return_address (unsigned int level);

Parameters

level
A constant literal indicating the number of frames to scan up the call stack.
The level must range from 0 to 63. A value of 0 returns the frame or return
address of the current function, a value of 1 returns the frame or return
address of the caller of the current function and so on.

Return value

Returns 0 when the top of the stack is reached. Optimizations such as inlining may
affect the expected return value by introducing extra stack frames or fewer stack
frames than expected. If a function is inlined, the frame or return address
corresponds to that of the function that is returned to.

__mem_delay
Purpose

The __mem_delay built-in function specifies how many delay cycles there are for
specific loads. These specific loads are delinquent loads with a long memory access
latency because of cache misses.

When you specify which load is delinquent the compiler takes that information
and carries out optimizations such as data prefetching. In addition, when you run
-gprefetch=assistthread, the compiler uses the delinquent load information to
perform analysis and generate prefetching assist threads. For more information, see
[“-gprefetch” on page 152

Prototype
void* __mem_delay (const void *address, const unsigned int cycles);

Parameters

address
The address of the data to be loaded or stored.

Chapter 6. Compiler built-in functions 355

cycles
A compile time constant, typically either L1 miss latency or L2 miss latency.

Usage

The __mem_delay built-in function is placed immediately before a statement that
contains a specified memory reference.

Examples
Here is how you generate code using assist threads with __mem_delay:

Initial code:
int y[64], x[1089], w[1024];

void foo(void){
int i, j;
for (i = 0; i &1; 64; i++) {
for (j = 0; j < 1024; j++) {

/* what to prefetch? y[i]; inserted by the user */
__mem_delay(&y[i], 10);
y[i1 = y[i] + x[i + 31 * w[il;
x[i +3 +1] = y[i] * 2;
}
}
}

Assist thread generated code:
void foo@clone(unsigned thread_id, unsigned version)

{ if (!'1) goto lab_1;

/* version control to synchronize assist and main thread */
if (version == @2version0) goto lab_5;

goto lab_1;
lab_5:
eCIV1 = 0;

do { /* id=1 guarded */ /% ~2 */

if (!1) goto Tab_3;

eCIVe = 0;

do { /* id=2 guarded */ /* ™4 =/

/* region = 0 */

/* __dcbt call generated to prefetch y[i] access */
__dcbt(((char *)&y + (4)*(@CIV1)))

@CIVO = @CIVO + 1;

} while ((unsigned) @CIVO < 1024u); /x ~4 */

lab 3:

@CIV1 = @CIV1 + 1
} while ((unsigned) @CIV1 < 64u); /x ~2 */

356 XL C/C++: Compiler Reference for Little Endian Distributions

lab_1:

return;

}

Related information
* |“-gprefetch” on page 152|

Transactional memory built-in functions

Transactional memory is a model for parallel programming. This module provides
functions that allow you to designate a block of instructions or statements to be
treated atomically. Such an atomic block is called a transaction. When a thread
executes a transaction, all of the memory operations within the transaction occur
simultaneously from the perspective of other threads.

For some kinds of parallel programs, a transaction implementation can be more
efficient than other implementation methods, such as locks. You can use these
built-in functions to mark the beginning and end of transactions, and to diagnose
the reasons for failure.

In the transactional memory built-in functions, the TM_buff parameter allows for a
user-provided memory location to be used to store the transaction state and
debugging information.

The transactional state is entered following a successful call to __TM_begin or
__TM_simple_begin, and ended by _ TM_end, _ TM_abort, _ TM named_abort, or by
transaction failure.

Transaction failure occurs when any of the following conditions is met:

* Memory that is accessed in the transactional state is accessed by another thread
or by the same thread running in the suspended state before the transaction
completes.

* The architecture-defined footprint for memory accesses within a transaction is
exceeded.

* The architecture-defined nesting limit for nested transactions is exceeded.

Transactions can be nested. You can use __TM begin or _ TM simple_begin in the
transactional state. Within an outermost transaction initiated with __TM_begin,
nested transactions must be initiated with _ TM_simple_begin, or by _ TM_begin
using the same buffer of the outermost containing transaction.

A nested transaction is subsumed into the containing transaction. Therefore, a
failure of the nested transaction is treated as a failure of all containing transactions,

and the nested transaction completes only when all contained transactions
complete.

Transaction begin and end functions

__TM_begin
Purpose

Marks the beginning of a transaction.

Chapter 6. Compiler built-in functions 357

Prototype
long _ TM_begin (void* const TM_buffer);

Parameter

T™_buffer
Stores the transaction state information upon a transaction failure or abort.

Usage

Upon a transaction failure (including a user abort), execution resumes from the
point immediately following the _ TM_begin that initiated the failed transaction as
if the __TM_begin were unsuccessful.

You can use the transaction inquiry functions to query the transaction status.

Return value

This function returns 0 if successful; otherwise, it returns a nonzero value.

__TM_end
Purpose

Marks the end of a transaction.
Prototype

long __ TM_end ();

Return value

This function returns 0 if the thread is in transactional state before the instruction
starts; otherwise, it returns 1.

__TM_simple_begin
Purpose

Marks the beginning of a transaction.

Prototype

long _ TM_simple_begin ();

Usage

Upon a transaction failure (including a user abort), execution resumes from the
point immediately following the _ TM_simple_begin function that initiated the

failed transaction as if the _ TM_simple_begin were unsuccessful.

Return value

This function returns 0 if successful; otherwise, it returns a nonzero value. The

transaction status of transactions started using _ TM_simple_begin cannot be
queried by using the transaction inquiry functions.

358 XL C/C++: Compiler Reference for Little Endian Distributions

Transaction abort functions

__TM_abort
Purpose

Aborts a transaction with failure code 0.
Prototype
void __TM_abort ();

__TM_named_abort
Purpose

Aborts a transaction with failure code code.
Prototype
void __TM_named_abort (unsigned char const code);

Parameter

code
Must be a literal in the range 0 - 255.

Transaction inquiry functions

__TM_failure_address
Purpose

Gets the code address at which the most recent transaction was aborted.
Prototypes
long _ TM_failure_address (void* const TM_buffer);

Parameter

TM_buffer
Stores the status information about a transaction.

Return value

This function returns the address at which the transaction was aborted.

__TM_failure_code
Purpose

Gets the raw failure code for the transaction.
Prototypes

long long _ TM._failure_code (void* const TM_buffer);

Chapter 6. Compiler built-in functions 359

Parameter

TM_buffer
Stores the status information about a transaction.

Return value

This function returns the contents of the TEXASR register. You can consult the
hardware specification for the information about how to interpret the return value.

__TM_is_conflict
Purpose

Queries whether the transaction was aborted because of a conflict.
Prototypes
long _ TM_is_conflict (void* const TM_buffer);

Parameter

TM_buffer
Stores the status information about a transaction.

Return value

This function returns 1 if the transaction whose status is stored in the TM_buffer
argument was aborted because of a conflict; otherwise, it returns 0.

__TM_is_failure_persistent
Purpose

Queries whether the transaction was aborted because of a persistent reason.
Prototypes
long _ TM_is_failure_persistent (void* const TM_buffer);

Parameter

TM_buffer
Stores the status information about a transaction.

Return value

This function returns 1 if the transaction whose status is stored in the TM_buffer
argument was aborted because of a persistent reason; otherwise, it returns 0.

__TM_is_footprint_exceeded
Purpose

Queries whether the transaction was aborted because of exceeding the maximum
number of cache lines.

Prototypes

long _ TM_is_footprint_exceeded (void* const TM_buffer);

360 XLC/C++: Compiler Reference for Little Endian Distributions

Parameter

TM_buffer
Stores the status information about a transaction.

Return value

This function returns 1 if the transaction whose status is stored in the TM_buffer
argument was aborted because of exceeding the maximum number of cache lines;
otherwise, it returns 0.

__TM_is_illegal
Purpose

Queries whether the transaction was aborted because of the attempt to do
something illegal, such as an instruction not permitted in transactional mode or
other kind of illegal access.

Prototypes
long _ TM_is_illegal (void* const TM_buffer);

Parameter

TM_buffer
Stores the status information about a transaction.

Return value

This function returns 1 if the transaction whose status is stored in the TM_buffer
argument was aborted because of the attempt to do something illegal; otherwise, it
returns 0.

__TM_is_named_user_abort
Purpose

Queries whether the transaction failed because of a user abort instruction.
Prototypes
long _ TM_is_named_user_abort (void* const TM_buffer, unsigned char* code);

Parameter

code
code is set to the code that was passed to the transaction abort instruction. If no
code is passed to the instruction, code is set to 0.

TM_buffer
Stores the status information about a transaction.

Return value

This function returns 1 if the transaction whose status is stored in the TM_buffer
argument failed because of a user abort instruction; otherwise, it returns 0.

Chapter 6. Compiler built-in functions 361

__TM_is_nested_too_deep
Purpose

Queries whether the transaction was aborted because of trying to exceed the
maximum nesting depth.

Prototypes
long _ TM_is_nested_too_deep (void* const TM_buffer);

Parameter

™ _buffer
Stores the status information about a transaction.

Return value
This function returns 1 if the transaction whose status is stored in the TM_buffer

argument was aborted because of trying to exceed the maximum nesting depth;
otherwise, it returns 0.

__TM_is_user_abort
Purpose

Queries whether the transaction failed because of a user abort instruction.
Prototypes
long _ TM_is_user_abort (void* const TM_buffer);

Parameter

TM_buffer
Stores the status information about a transaction.

Return value

This function returns 1 if the transaction whose status is stored in the TM_buffer
argument failed because of a user abort instruction; otherwise, it returns 0.

__TM_nesting_depth
Purpose

Gets the current nesting depth, or if not in transactional mode, the depth at which
the most recent transaction was aborted.

Prototypes
long _ TM_nesting_depth (void* const TM_buffer);

Parameter

TM_buffer
Stores the status information about a transaction.

362 XL C/C++: Compiler Reference for Little Endian Distributions

Usage

The result of _ TM_nesting_depth with a TM_buffer parameter is based on the
contents of the TEXASR register, as well as the transaction state in TM_buffer.

Return value
This function returns the current nesting depth of the transaction whose status is

stored in the TM_buffer argument, or if not in transactional mode, the depth at
which the transaction was aborted; otherwise, it returns 0.

Transaction resume and suspend functions

__TM_resume
Purpose

Resumes a transaction.
Prototype

void _ TM_resume ();

__TM_suspend
Purpose

Suspends a transaction.
Prototype

void __TM_suspend ();

Chapter 6. Compiler built-in functions 363

364 XL C/C++: Compiler Reference for Little Endian Distributions

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2014 365

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director

IBM Canada Ltd. Laboratory
8200 Warden Avenue
Markham, Ontario L6G 1C7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM's application programming interfaces.

366 XL C/C++: Compiler Reference for Little Endian Distributions

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1998, 2014.

Trademarks and service marks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at|‘Copyright and|
[trademark information”| at |http:/ /www.ibm.com /legal / copytrade.shtml|

Adobe is a registered trademark of Adobe Systems Incorporated in the United
States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 367

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

368 XL C/C++: Compiler Reference for Little Endian Distributions

Index

Special characters

—-help compiler option 45

--version (-qversion) compiler option 46

-ftrapping-math (-gflttrap) compiler
option 81

-ghelp compiler option 45

-qreport compiler option 156

-qsaveopt compiler option 162

A

alias 77
-qalias compiler option 77
pragma disjoint 195
alignment 76
-fpack-struct (-qalign) compiler
option 76
pragma align 76
pragma pack 200
alter program semantics 170
appending macro definitions,
preprocessed output 68
architecture 101
-mtune compiler option 103
-qarch compiler option 101
-qcache compiler option 108
-qtune compiler option 103
macros 216
arrays
padding 122

B

basic example, described xi
built-in functions 221
BCD 239
Binary-coded decimal 239
__bed_invalid 240
__bcdadd 239
__bcdadd_ofl 240
__bcdempeq 240
__bcdempge 240
__bcdempgt 241
__bcdemple 241
__bedemplt 241
__bedsub 239
__bedsub_ofl 240
vec_ldrmb 241
vec_strmb 241
block-related 257
cache-related 249
cryptography 252
__vcipher 252
__vcipherlast 252
__vncipher 253
__vncipherlast 253
__vpermxor 255
__vpmsumb 256
__vpmsumd 256
__vpmsumh 256

© Copyright IBM Corp. 1996, 2014

built-in functions (continued)
cryptography (continued)
__vpmsumw 257
__vsbox 253
__vshasigmad 254
__vshasigmaw 254
fixed-point 221
floating-point 229
GCC atomic memory access 343
miscellaneous 352
synchronization and atomic 242

C

C++11
-qlanglvl compiler options
-qlanglvl=c99preprocessor 182
-qlanglvl=extendedOx 182
C99 preprocessor
-qlanglvl compiler option
-qlanglvl=c99preprocessor 182
cleanpdf command 148
compatibility
compatibility
options for compatibility 41
compiler options 4
performance optimization 38
resolving conflicts 6
specifying compiler options 4
command line 5
configuration file 5
source files 5
summary of command line
options 29
configuration 19
custom configuration files 19
specifying compiler options 5
configuration file 54
control of implicit timestamps 175
control of transformations 170

D

data types 100
-qaltivec compiler option 100

E

environment variable 17
environment variables 18
error checking and debugging 34
-g compiler option 90
-qcheck compiler option 111
-qlinedebug compiler option 138
exception handling
for floating point 81

F

floating-point
exceptions 81

G

GCC options 25
GNU
compatibility with 25

H

high order transformation 122

implicit timestamps, control of 175
inlining 74
interprocedural analysis (IPA) 129
invocations 1
compiler or components 1
preprocessor 7
selecting 1
syntax 2

L

language level
extendedOx 182
language standards 182
lib*.a library files 99
lib*.so library files 99
libraries
libraries
redistributable 10
XL C/C++ 10
linker 9
invoking 9
linking 9
options that control linking 40
order of linking 10
listing 13
-qlist compiler option 139
options that control listings and
messages 38

M

machines, compiling for different
types 101
macro definitions, preprocessed
output 68
macros 211
related to architecture 216
related to compiler options 214
related to language features 217
related to the compiler 212
related to the platform 213

369

maf suboption of -gfloat 173
mergepdf 148

(0

object output, implicit timestamps 175
optimization 38
-O compiler option 58
-qalias compiler option 77
-qoptimize compiler option 58
controlling, using option_override
pragma 199
loop optimization 38
-ghot compiler option 122
-gstrict_induction compiler
option 174
options for performance
optimization 38
option 88

P

performance 38
-O compiler option 58
-qalias compiler option 77
-qoptimize compiler option 58
platform, compiling for a specific

type 101

pragmas
nosimd 198
priority 155
unroll 206

Pragmas

See supported by GCC
profile-directed feedback (PDF) 144

-qpdfl compiler option 144

-qpdf2 compiler option 144
profiling 106

-qpdfl compiler option 144

-qpdf2 compiler option 144

-qgshowpdf compiler option 164

R

resetpdf command 148
rrm suboption of -qfloat 173

S

shared objects 178

-shared (-qmkshrobj) 178
showpdf 148
SIGTRAP signal 81

T

target machine, compiling for 101
templates
-qtmplinst compiler option 175
transformations, control of 170
tuning 103
-march compiler option 103
-mtune compiler option 103
-qarch compiler option 103
-qtune compiler option 103

\'}

vector built-in functions
vec_abs 258
vec_add 259
vec_add_ul28 259
vec_addc_ul28 260
vec_adde_ul28 260
vec_addec_ul28 261
vec_and 271
vec_andc 272
vec_bperm 283
vec_ceil 283
vec_cmpeq 283
vec_cmpgt 285
vec_cmplt 286
vec_cntlz 287
vec_cpsgn 288
vec_eqv 292
vec_extract 293
vec_floor 294
vec_gbb 294
vec_insert 295
vec_ld 296
vec_lvsl 297
vec_lvsr 297
vec_madd 298
vec_mul 303
vec_nabs 304
vec_nand 304
vec_nearbyint 305
vec_neg 306
vec_nor 308
vec_orc 310
vec_pack 311
vec_packs 312
vec_packsu 312
vec_perm 313
vec_popent 314
vec_recipdiv 316
vec_revb 317
vec_reve 317
vec_rl 318
vec_round 319
vec_rsqrt 321
vec_sl 323
vec_sldw 324
vec_splat 325
vec_splats 326
vec_sr 327
vec_sra 327
vec_st 328
vec_sub_ul28 330
vec_subc_ul28 331
vec_sube_ul28 331
vec_subec_ul28 331
vec_trunc 332
vec_unpackh 332
vec_unpackl 333
vec_vclz 333
vec_vgbbd 334
vector data types 100
-qaltivec compiler option 100
vector processing 165
-qaltivec compiler option 100
virtual function table (VFT) 73
-fdump-class-hierarchy
(-qdump_class_hierarchy) 73

370 XL C/C++: Compiler Reference for Little Endian Distributions

visibility attributes 88

VMX built-in procedures
vec_xl 334
vec_xl_be 335
vec_xst 340
vec_xst_be 340

Product Number: 5765-J08; 5725-C73

Printed in USA

SC27-6570-00

	Contents
	About this information
	Who should read this information
	How to use this information
	How this information is organized
	Conventions
	Related information
	IBM XL C/C++ information
	Standards and specifications
	Other IBM information
	Other information

	Technical support
	How to send your comments

	Chapter 1. Compiling and linking applications
	Invoking the compiler
	Command-line syntax

	Types of input files
	Types of output files
	Specifying compiler options
	Specifying compiler options on the command line
	Specifying compiler options in a configuration file
	Specifying compiler options in program source files
	Resolving conflicting compiler options

	Preprocessing
	Directory search sequence for include files

	Linking
	Order of linking
	Redistributable libraries

	Compiler messages and listings
	Compiler messages
	Message severity levels and compiler response

	Compiler return codes
	gxlc and gxlc++ return codes

	Compiler listings
	Paging space errors during compilation

	Chapter 2. Configuring compiler defaults
	Setting environment variables
	Compile-time and link-time environment variables
	Runtime environment variables

	Using custom compiler configuration files
	Creating custom configuration files
	Overriding the default order of attribute values
	Examples of stanzas in custom configuration files

	Using IBM XL C/C++ for Linux, V13.1.1 with the Advance Toolchain

	Chapter 3. Compiler options reference
	Supported GCC options
	Summary of compiler options by functional category
	Output control
	Input control
	Language element control
	Template control (C++ only)
	Floating-point and integer control
	Object code control
	Error checking and debugging
	Listings, messages, and compiler information
	Optimization and tuning
	Linking
	Portability and migration
	Compiler customization

	Individual option descriptions
	-### (-#) (pound sign)
	-+ (plus sign) (C++ only)
	--help (-qhelp)
	--version (-qversion)
	@file (-qoptfile)
	-B
	-C, -C!
	-D
	-E
	-F
	-I
	-L
	-O, -qoptimize
	-P
	-R
	-S
	-U
	-X (-W)
	-Werror (-qhalt)
	-c
	-dM (-qshowmacros)
	-e
	-fasm (-qasm)
	-fcommon (-qcommon)
	-fdollars-in-identifiers (-qdollar)
	-fdump-class-hierarchy (-qdump_class_hierarchy) (C++ only)
	-finline-functions (-qinline)
	-fPIC (-qpic)
	-fpack-struct (-qalign)
	-fsigned-char, -funsigned-char (-qchars)
	-fstrict-aliasing (-qalias=ansi), -qalias
	-fsyntax-only (-qsyntaxonly) (C only)
	-ftemplate-depth (-qtemplatedepth) (C++ only)
	-ftrapping-math (-qflttrap)
	-ftls-model (-qtls)
	-ftime-report (-qphsinfo)
	-funroll-loops (-qunroll), -funroll-all-loops (-qunroll=yes)
	-fvisibility (-qvisibility)
	-g
	-include (-qinclude)
	-isystem (-qc_stdinc) (C only)
	-isystem (-qcpp_stdinc) (C++ only)
	-isystem (-qgcc_c_stdinc) (C only)
	-isystem (-qgcc_cpp_stdinc) (C++ only)
	-l
	-maltivec (-qaltivec)
	-mcpu (-qarch)
	-mtune (-qtune)
	-o
	-p, -pg, -qprofile
	-qaggrcopy
	-qasm_as
	-qcache
	-qcheck
	-qcompact
	-qcrt, -nostartfiles (-qnocrt)
	-qdataimported, -qdatalocal, -qtocdata
	-qdirectstorage
	-qeh (C++ only)
	-qfloat
	-qfullpath
	-qhot
	-qignerrno
	-qinitauto
	-qinlglue
	-qipa
	-qisolated_call
	-qkeepparm
	-qlib, -nodefaultlibs (-qnolib)
	-qlibansi
	-qlinedebug
	-qlist
	-qmaxmem
	-qmakedep, -MD (-qmakedep=gcc)
	-qpath
	-qpdf1, -qpdf2
	-qprefetch
	-qpriority (C++ only)
	-qreport
	-qreserved_reg
	-qro
	-qroconst
	-qrtti, -fno-rtti (-qnortti) (C++ only)
	-qsaveopt
	-qshowpdf
	-qsimd
	-qsmallstack
	-qspill
	-qstaticinline (C++ only)
	-qstdinc, -qnostdinc (-nostdinc, -nostdinc++)
	-qstrict
	-qstrict_induction
	-qtimestamps
	-qtmplinst (C++ only)
	-qunwind
	-r
	-s
	-shared (-qmkshrobj)
	-static (-qstaticlink)
	-std (-qlanglvl)
	-t
	-v, -V
	-w
	-Wunsupported-xl-macro
	-x (-qsourcetype)
	-y

	Chapter 4. Compiler pragmas reference
	Pragma directive syntax
	Scope of pragma directives
	Supported GCC pragmas
	Supported IBM pragmas
	#pragma disjoint
	#pragma execution_frequency
	#pragma ibm independent_loop
	#pragma nosimd
	#pragma option_override
	#pragma pack
	#pragma reachable
	#pragma simd_level
	#pragma STDC CX_LIMITED_RANGE
	#pragma unroll, #pragma nounroll
	#pragma weak

	Chapter 5. Compiler predefined macros
	General macros
	Macros indicating the XL C/C++ compiler
	Macros related to the platform
	Macros related to compiler features
	Macros related to compiler option settings
	Macros related to architecture settings
	Macros related to language levels

	Unsupported macros from other XL compilers

	Chapter 6. Compiler built-in functions
	Fixed-point built-in functions
	Absolute value functions
	__labs, __llabs

	Assert functions
	__assert1, __assert2

	Bit permutation functions
	__bpermd

	Comparison functions
	__cmpb

	Count zero functions
	__cntlz4, __cntlz8
	__cnttz4, __cnttz8

	Division functions
	__divde
	__divdeu
	__divwe
	__divweu

	Load functions
	__load2r, __load4r
	__load8r

	Multiply functions
	__mulhd, __mulhdu
	__mulhw, __mulhwu

	Population count functions
	__popcnt4, __popcnt8
	__popcntb
	__poppar4, __poppar8

	Rotate functions
	__rdlam
	__rldimi, __rlwimi
	__rlwnm
	__rotatel4, __rotatel8

	Store functions
	__store2r, __store4r
	__store8r

	Trap functions
	__tdw, __tw
	__trap, __trapd

	Binary floating-point built-in functions
	Absolute value functions
	__fnabss
	__fnabs

	Conversion functions
	__cmplx, __cmplxf, __cmplxl
	__fcfid
	__fcfud
	__fctid
	__fctidz
	__fctiw
	__fctiwz
	__fctudz
	__fctuwz
	__ibm2gccldbl, __ibm2gccldbl_cmplx (IBM extension)

	FPSCR functions
	__mtfsb0
	__mtfsb1
	__mtfsf
	__mtfsfi
	__readflm
	__setflm
	__setrnd

	Multiply-add/subtract functions
	__fmadd, __fmadds
	__fmsub, __fmsubs
	__fnmadd, __fnmadds
	__fnmsub, __fnmsubs

	Reciprocal estimate functions
	__fre, __fres

	Rounding functions
	__fric
	__frim, __frims
	__frin, __frins
	__frip, __frips
	__friz, __frizs

	Select functions
	__fsel, __fsels

	Square root functions
	__frsqrte, __frsqrtes
	__fsqrt, __fsqrts

	Software division functions
	__swdiv, __swdivs
	__swdiv_nochk, __swdivs_nochk

	Store functions
	__stfiw

	Binary-coded decimal built-in functions
	BCD add and subtract
	__bcdadd
	__bcdsub

	BCD test add and subtract for overflow
	__bcdadd_ofl
	__bcdsub_ofl
	__bcd_invalid

	BCD comparison
	__bcdcmpeq
	__bcdcmpge
	__bcdcmpgt
	__bcdcmple
	__bcdcmplt

	BCD load and store
	__vec_ldrmb
	__vec_strmb

	Synchronization and atomic built-in functions
	Check lock functions
	__check_lock_mp, __check_lockd_mp
	__check_lock_up, __check_lockd_up

	Clear lock functions
	__clear_lock_mp, __clear_lockd_mp
	__clear_lock_up, __clear_lockd_up

	Compare and swap functions
	__compare_and_swap, __compare_and_swaplp

	Fetch functions
	__fetch_and_and, __fetch_and_andlp
	__fetch_and_or, __fetch_and_orlp
	__fetch_and_swap, __fetch_and_swaplp

	Load functions
	__lqarx, __ldarx, __lwarx, __lharx, __lbarx

	Store functions
	__stqcx, __stdcx, __stwcx, __sthcx, __stbcx

	Synchronization functions
	__eieio, __iospace_eioio
	__isync
	__lwsync, __iospace_lwsync
	__sync, __iospace_sync

	Cache-related built-in functions
	Data cache functions
	__dcbf
	__dcbfl
	__dcbst
	__dcbt
	__dcbtna
	__dcbtst
	__dcbz
	__icbt

	Prefetch built-in functions
	__prefetch_by_load
	__prefetch_by_stream

	Cryptography built-in functions
	Advanced Encryption Standard functions
	__vcipher
	__vcipherlast
	__vncipher
	__vncipherlast
	__vsbox

	Secure Hash Algorithm functions
	__vshasigmad
	__vshasigmaw

	Miscellaneous functions
	__vpermxor
	__vpmsumb
	__vpmsumd
	__vpmsumh
	__vpmsumw

	Block-related built-in functions
	__bcopy

	Vector built-in functions
	vec_abs
	vec_add
	vec_add_u128
	vec_addc_u128
	vec_adde_u128
	vec_addec_u128
	vec_all_eq
	vec_all_ge
	vec_all_gt
	vec_all_le
	vec_all_lt
	vec_all_nan
	vec_all_ne
	vec_all_nge
	vec_all_ngt
	vec_all_nle
	vec_all_nlt
	vec_all_numeric
	vec_and
	vec_andc
	vec_any_eq
	vec_any_ge
	vec_any_gt
	vec_any_le
	vec_any_lt
	vec_any_nan
	vec_any_ne
	vec_any_nge
	vec_any_ngt
	vec_any_nle
	vec_any_nlt
	vec_any_numeric
	vec_bperm
	vec_ceil
	vec_cmpeq
	vec_cmpge
	vec_cmpgt
	vec_cmple
	vec_cmplt
	vec_cntlz
	vec_cpsgn
	vec_ctd
	vec_ctf
	vec_cts
	vec_ctsl
	vec_ctu
	vec_ctul
	vec_cvf
	vec_div
	vec_eqv
	vec_extract
	vec_floor
	vec_gbb
	vec_insert
	vec_ld
	vec_lvsl
	vec_lvsr
	vec_madd
	vec_max
	vec_mergeh
	vec_mergel
	vec_min
	vec_msub
	vec_mul
	vec_nabs
	vec_nand
	vec_nearbyint
	vec_neg
	vec_nmadd
	vec_nmsub
	vec_nor
	vec_or
	vec_orc
	vec_pack
	vec_packs
	vec_packsu
	vec_perm
	vec_popcnt
	vec_promote
	vec_re
	vec_recipdiv
	vec_revb
	vec_reve
	vec_rint
	vec_rl
	vec_round
	vec_roundc
	vec_roundm
	vec_roundp
	vec_roundz
	vec_rsqrt
	vec_rsqrte
	vec_sel
	vec_sl
	vec_sldw
	vec_splat
	vec_splats
	vec_sqrt
	vec_sr
	vec_sra
	vec_st
	vec_sub
	vec_sub_u128
	vec_subc_u128
	vec_sube_u128
	vec_subec_u128
	vec_trunc
	vec_unpackh
	vec_unpackl
	vec_vclz
	vec_vgbbd
	vec_xl
	vec_xl_be
	vec_xld2
	vec_xlds
	vec_xlw4
	vec_xor
	vec_xst
	vec_xst_be
	vec_xstd2
	vec_xstw4

	GCC atomic memory access built-in functions (IBM extension)
	Atomic lock, release, and synchronize functions
	__sync_lock_test_and_set
	__sync_lock_release
	__sync_synchronize

	Atomic fetch and operation functions
	__sync_fetch_and_and
	__sync_fetch_and_nand
	__sync_fetch_and_or
	__sync_fetch_and_xor
	__sync_fetch_and_add
	__sync_fetch_and_sub

	Atomic operation and fetch functions
	__sync_and_and_fetch
	__sync_nand_and_fetch
	__sync_or_and_fetch
	__sync_xor_and_fetch
	__sync_add_and_fetch
	__sync_sub_and_fetch

	Atomic compare and swap functions
	__sync_val_compare_and_swap
	__sync_bool_compare_and_swap

	Miscellaneous built-in functions
	Optimization-related functions
	__alignx
	__builtin_expect
	__fence

	Move to/from register functions
	__mftb
	__mfmsr
	__mfspr
	__mtmsr
	__mtspr

	Memory-related functions
	__alloca
	__builtin_frame_address, __builtin_return_address
	__mem_delay

	Transactional memory built-in functions
	Transaction begin and end functions
	__TM_begin
	__TM_end
	__TM_simple_begin

	Transaction abort functions
	__TM_abort
	__TM_named_abort

	Transaction inquiry functions
	__TM_failure_address
	__TM_failure_code
	__TM_is_conflict
	__TM_is_failure_persistent
	__TM_is_footprint_exceeded
	__TM_is_illegal
	__TM_is_named_user_abort
	__TM_is_nested_too_deep
	__TM_is_user_abort
	__TM_nesting_depth

	Transaction resume and suspend functions
	__TM_resume
	__TM_suspend

	Notices
	Trademarks and service marks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	O
	P
	R
	S
	T
	V

