
IBM XL C/C++ for Linux, V13.1.1

Optimization and Programming Guide
for Little Endian Distributions
Version 13.1.1

SC27-6560-00

IBM

IBM XL C/C++ for Linux, V13.1.1

Optimization and Programming Guide
for Little Endian Distributions
Version 13.1.1

SC27-6560-00

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 101.

First edition

This edition applies to IBM XL C/C++ for Linux, V13.1.1 (Program 5765-J08; 5725-C73) and to all subsequent
releases and modifications until otherwise indicated in new editions. Make sure you are using the correct edition
for the level of the product.

© Copyright IBM Corporation 1996, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information v
Who should read this information v
How to use this information v
How this information is organized v
Conventions vi
Related information viii

IBM XL C/C++ information ix
Standards and specifications x
Other IBM information x
Other information x

Technical support x
How to send your comments xi

Chapter 1. Porting from 32-bit to 64-bit
mode 1
Assigning long values 1

Assigning constant values to long variables . . . 2
Bit-shifting long values 3

Assigning pointers 3
Aligning aggregate data 4
Calling Fortran code 4

Chapter 2. Using XL C/C++ with Fortran 5
Identifiers 5
Corresponding data types 6
Character and aggregate data 8
Function calls and parameter passing 8
Pointers to functions. 9
Sample program: C/C++ calling Fortran 9

Chapter 3. Aligning data 11
Using alignment modes 11

Alignment of aggregates 12
Alignment of bit-fields. 13

Using alignment modifiers 14

Chapter 4. Handling floating-point
operations 17
Floating-point formats 17
Handling multiply-add operations. 17
Compiling for strict IEEE conformance 17
Handling floating-point constant folding and
rounding 18

Matching compile-time and runtime rounding
modes 19

Handling floating-point exceptions 20

Chapter 5. Using C++ constructors . . 21
Using delegating constructors (C++11) 21

Chapter 6. The C++ template model . . 23

Chapter 7. Constructing a library . . . 25
Compiling and linking a library 25

Compiling a static library. 25
Compiling a shared library 25
Linking a library to an application. 25
Linking a shared library to another shared library 26

Initializing static objects in libraries (C++) 26
Assigning priorities to objects 26
Order of object initialization across libraries . . 27

Chapter 8. Optimizing your applications 31
Distinguishing between optimization and tuning . . 31
Steps in the optimization process 32
Basic optimization 32

Optimizing at level 0 32
Optimizing at level 2 33

Advanced optimization 34
Optimizing at level 3 35
An intermediate step: adding -qhot suboptions at
level 3 36
Optimizing at level 4 36
Optimizing at level 5 37

Tuning for your system architecture 38
Getting the most out of target machine options 38

Using high-order loop analysis and transformations 39
Getting the most out of -qhot 40

Using interprocedural analysis 41
Getting the most from -qipa 42

Using profile-directed feedback 43
Viewing profiling information with showpdf . . 47
Object level profile-directed feedback 50

Marking variables as local or imported 51
Getting the most out of -qdatalocal 52

Other optimization options 53

Chapter 9. Debugging optimized code 55
Understanding different results in optimized
programs 55
Debugging in the presence of optimization 56

Chapter 10. Coding your application to
improve performance 59
Finding faster input/output techniques 59
Reducing function-call overhead 59
Using template explicit instantiation declarations
(C++11). 61
Managing memory efficiently (C++ only) 61
Optimizing variables 62
Manipulating strings efficiently 62
Optimizing expressions and program logic 63
Optimizing operations in 64-bit mode 64
Using rvalue references (C++11) 64

© Copyright IBM Corp. 1996, 2014 iii

Using visibility attributes (IBM extension) 67
Types of visibility attributes 68
Rules of visibility attributes 69
Propagation rules (C++ only) 75
Specifying visibility attributes using the
-fvisibility option 77
Specifying visibility attributes using pragma
preprocessor directives 77

Chapter 11. Using the high
performance libraries 81
Using the Mathematical Acceleration Subsystem
libraries (MASS) 81

Using the scalar library 82
Using the vector libraries 84
Using the SIMD libraries 88

Compiling and linking a program with MASS . . 91
Using the Basic Linear Algebra Subprograms –
BLAS 92

BLAS function syntax 93
Linking the libxlopt library 95

Chapter 12. Vector element order
toggling 97
Program migration from big endian systems . . . 100

Notices 101
Trademarks and service marks 103

Index 105

iv XL C/C++: Optimization and Programming Guide for Little Endian Distributions

About this information

This guide discusses advanced topics related to the use of the IBM® XL C/C++ for
Linux, V13.1.1 compiler, with a particular focus on program portability and
optimization. The guide provides both reference information and practical tips for
getting the most out of the compiler's capabilities, through recommended
programming practices and compilation procedures.

Who should read this information
This document is addressed to programmers building complex applications, who
already have experience compiling with XL C/C++, and would like to take further
advantage of the compiler's capabilities for program optimization and tuning,
support for advanced programming language features, and add-on tools and
utilities.

How to use this information
This document uses a "task-oriented" approach to present the topics, by
concentrating on a specific programming or compilation problem in each section.
Each topic contains extensive cross-references to the relevant sections of the
reference guides in the IBM XL C/C++ for Linux, V13.1.1 documentation set,
which provide detailed descriptions of compiler options and pragmas, and specific
language extensions.

How this information is organized
This guide includes these topics:
v Chapter 1, “Porting from 32-bit to 64-bit mode,” on page 1 discusses common

problems that arise when porting existing 32-bit applications to 64-bit mode, and
provides recommendations for avoiding these problems.

v Chapter 2, “Using XL C/C++ with Fortran,” on page 5 discusses considerations
for calling Fortran code from XL C/C++ programs.

v Chapter 3, “Aligning data,” on page 11 discusses the different compiler options
available for controlling the alignment of data in aggregates, such as structures
and classes, on all platforms.

v Chapter 4, “Handling floating-point operations,” on page 17 discusses options
available for controlling the way floating-point operations are handled by the
compiler.

v Chapter 5, “Using C++ constructors,” on page 21 discusses delegating
constructors that can concentrate common initializations in one constructor.

v Chapter 6, “The C++ template model,” on page 23 discusses the different options
for compiling programs that include C++ templates.

v Chapter 7, “Constructing a library,” on page 25 discusses how to compile and
link static and shared libraries, and how to specify the initialization order of
static objects in C++ programs.

v Chapter 8, “Optimizing your applications,” on page 31 discusses the various
options provided by the compiler for optimizing your programs, and provides
recommendations for use of the different options.

© Copyright IBM Corp. 1996, 2014 v

v Chapter 9, “Debugging optimized code,” on page 55 discusses the potential
usability problems of the optimized programs and the options that can be used
to debug the optimized code.

v Chapter 10, “Coding your application to improve performance,” on page 59
discusses recommended programming practices and coding techniques for
enhancing program performance and compatibility with the compiler's
optimization capabilities.

v Chapter 11, “Using the high performance libraries,” on page 81 discusses two
performance libraries that are shipped with XL C/C++: the Mathematical
Acceleration Subsystem (MASS), which contains tuned versions of standard
math library functions; and the Basic Linear Algebra Subprograms (BLAS),
which contains basic functions for matrix multiplication.

v Chapter 12, “Vector element order toggling,” on page 97 discusses that if users
want to consistently use the instructions generated by vector built-in functions,
users need to make all existing Vector Multimedia Extension (VMX) and Vector
Scalar Extension (VSX) load and store built-in functions operate on the vectors in
registers in the same vector element order, either little-endian or big-endian
element order.

Conventions
Typographical conventions

The following table shows the typographical conventions used in the IBM XL
C/C++ for Linux, V13.1.1 information.

Table 1. Typographical conventions

Typeface Indicates Example

bold Lowercase commands, executable
names, compiler options, and
directives.

The compiler provides basic
invocation commands, xlc and xlC
(xlc++), along with several other
compiler invocation commands to
support various C/C++ language
levels and compilation environments.

italics Parameters or variables whose
actual names or values are to be
supplied by the user. Italics are
also used to introduce new terms.

Make sure that you update the size
parameter if you return more than
the size requested.

underlining The default setting of a parameter
of a compiler option or directive.

nomaf | maf

monospace Programming keywords and
library functions, compiler builtins,
examples of program code,
command strings, or user-defined
names.

To compile and optimize
myprogram.c, enter: xlc myprogram.c
-O3.

Qualifying elements (icons)

Most features described in this information apply to both C and C++ languages. In
descriptions of language elements where a feature is exclusive to one language, or
where functionality differs between languages, this information uses icons to
delineate segments of text as follows:

vi XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Table 2. Qualifying elements

Qualifier/Icon Meaning

C only, or C only begins
C

C

C only ends

The text describes a feature that is supported in the C language
only; or describes behavior that is specific to the C language.

C++ only, or C++ only
begins

C++

C++

C++ only ends

The text describes a feature that is supported in the C++
language only; or describes behavior that is specific to the C++
language.

IBM extension, or IBM
extension begins

IBM

IBM

IBM extension ends

The text describes a feature that is an IBM extension to the
standard language specifications.

C11, or C11 begins
C11

C11

C11 ends

The text describes a feature that is introduced into standard C
as part of C11.

C++11, or C++11 begins
C++11

C++11

C++11 ends

The text describes a feature that is introduced into standard
C++ as part of C++11.

Syntax diagrams

Throughout this information, diagrams illustrate XL C/C++ syntax. This section
will help you to interpret and use those diagrams.
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ►►─── symbol indicates the beginning of a command, directive, or statement.
The ───► symbol indicates that the command, directive, or statement syntax is
continued on the next line.
The ►─── symbol indicates that a command, directive, or statement is continued
from the previous line.
The ───►◄ symbol indicates the end of a command, directive, or statement.
Fragments, which are diagrams of syntactical units other than complete
commands, directives, or statements, start with the │─── symbol and end with
the ───│ symbol.

v Required items are shown on the horizontal line (the main path):

About this information vii

►► keyword required_argument ►◄

v Optional items are shown below the main path:

►► keyword
optional_argument

►◄

v If you can choose from two or more items, they are shown vertically, in a stack.
If you must choose one of the items, one item of the stack is shown on the main
path.

►► keyword required_argument1
required_argument2

►◄

If choosing one of the items is optional, the entire stack is shown below the
main path.

►► keyword
optional_argument1
optional_argument2

►◄

v An arrow returning to the left above the main line (a repeat arrow) indicates
that you can make more than one choice from the stacked items or repeat an
item. The separator character, if it is other than a blank, is also indicated:

►► ▼

,

keyword repeatable_argument ►◄

v The item that is the default is shown above the main path.

►► keyword
default_argument
alternate_argument ►◄

v Keywords are shown in nonitalic letters and should be entered exactly as shown.
v Variables are shown in italicized lowercase letters. They represent user-supplied

names or values.
v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.

Examples in this information

The examples in this information, except where otherwise noted, are coded in a
simple style that does not try to conserve storage, check for errors, achieve fast
performance, or demonstrate all possible methods to achieve a specific result.

The examples for installation information are labelled as either Example or Basic
example. Basic examples are intended to document a procedure as it would be
performed during a basic, or default, installation; these need little or no
modification.

Related information
The following sections provide related information for XL C/C++:

viii XL C/C++: Optimization and Programming Guide for Little Endian Distributions

IBM XL C/C++ information
XL C/C++ provides product information in the following formats:
v README files

README files contain late-breaking information, including changes and
corrections to the product information. README files are located by default in
the XL C/C++ directory, and in the root directory and subdirectories of the
installation DVD.

v Installable man pages
Man pages are provided for the compiler invocations and all command-line
utilities provided with the product. Instructions for installing and accessing the
man pages are provided in the IBM XL C/C++ for Linux, V13.1.1 Installation
Guide.

v Online product documentation
The fully searchable HTML-based documentation is viewable in IBM Knowledge
Center at http://www.ibm.com/support/knowledgecenter/SSXVZZ_13.1.1/
com.ibm.compilers.linux.doc/welcome.html.

v PDF documents
PDF documents are available on the web at http://www.ibm.com/support/
docview.wss?uid=swg27036675.
The following files comprise the full set of XL C/C++ product information:

Table 3. XL C/C++ PDF files

Document title
PDF file
name Description

IBM XL C/C++ for Linux,
V13.1.1 Installation Guide,
GC27-6540-00

install.pdf Contains information for installing XL C/C++
and configuring your environment for basic
compilation and program execution.

Getting Started with IBM
XL C/C++ for Linux,
V13.1.1, GI13-2875-00

getstart.pdf Contains an introduction to the XL C/C++
product, with information on setting up and
configuring your environment, compiling and
linking programs, and troubleshooting
compilation errors.

IBM XL C/C++ for Linux,
V13.1.1 Compiler Reference,
SC27-6570-00

compiler.pdf Contains information about the various
compiler options, pragmas, macros,
environment variables, and built-in functions.

IBM XL C/C++ for Linux,
V13.1.1 Language Reference,
SC27-6550-00

langref.pdf Contains information about language extensions
for portability and conformance to
nonproprietary standards.

IBM XL C/C++ for Linux,
V13.1.1 Optimization and
Programming Guide,
SC27-6560-00

proguide.pdf Contains information on advanced
programming topics, such as application
porting, interlanguage calls with Fortran code,
library development, application optimization,
and the XL C/C++ high-performance libraries.

To read a PDF file, use Adobe Reader. If you do not have Adobe Reader, you
can download it (subject to license terms) from the Adobe website at
http://www.adobe.com.

More information related to XL C/C++ including IBM Redbooks® publications,
white papers, tutorials, documentation errata, and other articles, is available on the
web at:

http://www.ibm.com/support/docview.wss?uid=swg27036675

About this information ix

http://www.ibm.com/support/knowledgecenter/SSXVZZ_13.1.1/com.ibm.compilers.linux.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/SSXVZZ_13.1.1/com.ibm.compilers.linux.doc/welcome.html
http://www.ibm.com/support/docview.wss?uid=swg27036675
http://www.ibm.com/support/docview.wss?uid=swg27036675
http://www.adobe.com
http://www.ibm.com/support/docview.wss?uid=swg27036675

For more information about boosting performance, productivity, and portability,
see the C/C++ café at https://www.ibm.com/developerworks/community/
groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-
3956e82276f3.

Standards and specifications
XL C/C++ is designed to support the following standards and specifications. You
can refer to these standards for precise definitions of some of the features found in
this information.
v Information Technology - Programming languages - C, ISO/IEC 9899:1990, also

known as C89.
v Information Technology - Programming languages - C, ISO/IEC 9899:1999, also

known as C99.
v Information Technology - Programming languages - C, ISO/IEC 9899:2011, also

known as C11. (Partial support)
v Information Technology - Programming languages - C++, ISO/IEC 14882:1998, also

known as C++98.
v Information Technology - Programming languages - C++, ISO/IEC 14882:2003, also

known as Standard C++.
v Information Technology - Programming languages - C++, ISO/IEC 14882:2011, also

known as C++11. (Partial support)
v Information Technology - Programming languages - Extensions for the programming

language C to support new character data types, ISO/IEC DTR 19769. This draft
technical report has been accepted by the C standards committee, and is
available at http://www.open-std.org/JTC1/SC22/WG14/www/docs/
n1040.pdf

v AltiVec Technology Programming Interface Manual, Motorola Inc. This specification
for vector data types, to support vector processing technology, is available at
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf.

v ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.

Other IBM information
v ESSL product documentation available at http://www.ibm.com/support/

knowledgecenter/SSFHY8/essl_welcome.html

Other information
v Using the GNU Compiler Collection available at http://gcc.gnu.org/onlinedocs

Technical support
Additional technical support is available from the XL C/C++ Support page at
http://www.ibm.com/support/entry/portal/overview/software/rational/
xl_c~c++_for_linux. This page provides a portal with search capabilities to a large
selection of Technotes and other support information.

If you cannot find what you need, you can send email to compinfo@cn.ibm.com.

For the latest information about XL C/C++, visit the product information site at
http://www.ibm.com/software/products/us/en/xlcpp-linux/.

x XL C/C++: Optimization and Programming Guide for Little Endian Distributions

https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1040.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1040.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf
http://www.ibm.com/support/knowledgecenter/SSFHY8/essl_welcome.html
http://www.ibm.com/support/knowledgecenter/SSFHY8/essl_welcome.html
http://gcc.gnu.org/onlinedocs
http://www.ibm.com/support/entry/portal/overview/software/rational/xl_c~c++_for_linux
http://www.ibm.com/support/entry/portal/overview/software/rational/xl_c~c++_for_linux
http://www.ibm.com/software/products/us/en/xlcpp-linux/

How to send your comments
Your feedback is important in helping to provide accurate and high-quality
information. If you have any comments about this information or any other XL
C/C++ information, send your comments by email to compinfo@cn.ibm.com.

Be sure to include the name of the manual, the part number of the manual, the
version of XL C/C++, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).

About this information xi

xii XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Chapter 1. Porting from 32-bit to 64-bit mode

IBM XL C/C++ for Linux, V13.1.1 supports only 64-bit compilation mode, which
means you can use the XL C/C++ compiler to develop only 64-bit applications.

You might want to port existing 32-bit applications to the 64-bit IBM XL C/C++ for
Linux, V13.1.1. However, this can lead to a number of problems, mostly related to
the differences in C/C++ long and pointer data type sizes and alignment between
the two modes. The following table summarizes these differences.

Table 4. Size and alignment of data types in 32-bit and 64-bit modes

Data type 32-bit mode 64-bit mode

Size Alignment Size Alignment

long, signed long,
unsigned long

4 bytes 4-byte boundaries 8 bytes 8-byte boundaries

pointer 4 bytes 4-byte boundaries 8 bytes 8-byte boundaries

size_t (defined in the
header file <cstddef>)

4 bytes 4-byte boundaries 8 bytes 8-byte boundaries

ptrdiff_t (defined in
the header file
<cstddef>)

4 bytes 4-byte boundaries 8 bytes 8-byte boundaries

The following sections discuss some of the common pitfalls implied by these
differences, as well as recommended programming practices to help you avoid
most of these issues:
v “Assigning long values”
v “Assigning pointers” on page 3
v “Aligning aggregate data” on page 4
v “Calling Fortran code” on page 4

For suggestions on improving performance in 64-bit mode, see "Optimize
operations in 64-bit mode".

Related information in the XL C/C++ Compiler Reference

Compile-time and link-time environment variables

Assigning long values
The limits of long type integers defined in the limits.h standard library header
file are shown in the following table.

Table 5. Constant limits of long integers in 64-bit mode

Symbolic constant Value Hexadecimal Decimal

LONG_MIN
(smallest signed
long)

–263 0x8000000000000000L –9,223,372,036,854,775,808

LONG_MAX (largest
signed long)

263–1 0x7FFFFFFFFFFFFFFFL +9,223,372,036,854,775,807

© Copyright IBM Corp. 1996, 2014 1

Table 5. Constant limits of long integers in 64-bit mode (continued)

Symbolic constant Value Hexadecimal Decimal

ULONG_MAX
(largest unsigned
long)

264–1 0xFFFFFFFFFFFFFFFFUL +18,446,744,073,709,551,615

Implications of these differences are:
v Assigning a long value to a double variable can cause loss of accuracy.
v Assigning constant values to long variables can lead to unexpected results. This

issue is explored in more detail in “Assigning constant values to long variables.”
v Bit-shifting long values will produce different results, as described in

“Bit-shifting long values” on page 3.
v Using int and long types interchangeably in expressions will lead to implicit

conversion through promotions, demotions, assignments, and argument passing,
and can result in truncation of significant digits, sign shifting, or unexpected
results, without warning. These operations can impact performance.

In situations where a long value can overflow when assigned to other variables or
passed to functions, you must:
v Avoid implicit type conversion by using explicit type casting to change types.
v Ensure that all functions that accept or return long types are properly

prototyped.
v Ensure that long type parameters can be accepted by the functions to which they

are being passed.

Assigning constant values to long variables
Although type identification of constants follows explicit rules in C and C++, many
programs use hexadecimal or unsuffixed constants as "typeless" variables and rely
on a twos complement representation to truncate values that exceed the limits
permitted on a 32-bit system. As these large values are likely to be extended into a
64-bit long type in 64-bit mode, unexpected results can occur, generally at
boundary areas such as:
v constant > UINT_MAX
v constant < INT_MIN
v constant > INT_MAX

Some examples of unexpected boundary side effects are listed in the following
table.

Table 6. Unexpected boundary results of constants assigned to long types

Constant assigned to long Equivalent value 32-bit mode 64-bit mode

–2,147,483,649 INT_MIN–1 +2,147,483,647 –2,147,483,649

+2,147,483,648 INT_MAX+1 –2,147,483,648 +2,147,483,648

+4,294,967,726 UINT_MAX+1 0 +4,294,967,296

0xFFFFFFFF UINT_MAX –1 +4,294,967,295

0x100000000 UINT_MAX+1 0 +4,294,967,296

0xFFFFFFFFFFFFFFFF ULONG_MAX –1 –1

2 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Unsuffixed constants can lead to type ambiguities that can affect other parts of
your program, such as when the results of sizeof operations are assigned to
variables. For example, in 32-bit mode, the compiler types a number like
4294967295 (UINT_MAX) as an unsigned long and sizeof returns 4 bytes. In 64-bit
mode, this same number becomes a signed long and sizeof returns 8 bytes.
Similar problems occur when passing constants directly to functions.

You can avoid these problems by using the suffixes L (for long constants), UL (for
unsigned long constants), LL (for long long constants), or ULL (for unsigned long
long constants) to explicitly type all constants that have the potential of affecting
assignment or expression evaluation in other parts of your program. In the
example cited in the preceding paragraph, suffixing the number as 4294967295U
forces the compiler to always recognize the constant as an unsigned int in 32-bit
or 64-bit mode. These suffixes can also be applied to hexadecimal constants.

Bit-shifting long values
The examples in Table 7 show the effects of performing a bit-shift on long
constants using the following code segment:
long l=valueL<<1;

Table 7. Results of bit-shifting long values

Initial value Symbolic constant Value after bit shift by one bit

0x7FFFFFFFL INT_MAX 0x00000000FFFFFFFE

0x80000000L INT_MIN 0x0000000100000000

0xFFFFFFFFL UINT_MAX 0x00000001FFFFFFFE

In 32-bit mode, 0xFFFFFFFE is negative. In 64-bit mode, 0x00000000FFFFFFFE and
0x00000001FFFFFFFE are both positive.

Assigning pointers
In 64-bit mode, pointers and int types are no longer of the same size. The
implications of this are as follows:
v Exchanging pointers and int types causes segmentation faults.
v Passing pointers to a function expecting an int type results in truncation.
v Functions that return a pointer, but are not explicitly prototyped as such, return

an int instead and truncate the resulting pointer, as illustrated in the following
example.
In C, the following code is valid in 32-bit mode without a prototype:
a=(char*) calloc(25);

Without a function prototype for calloc, when the same code is compiled in 64-bit
mode, the compiler assumes the function returns an int, so a is silently truncated,
and then sign-extended. Type casting the result does not prevent the truncation, as
the address of the memory allocated by calloc was already truncated during the
return. In this example, the best solution is to include the header file, stdlib.h,
which contains the prototype for calloc. An alternative solution is to prototype the
function as it is in the header file.

To avoid these types of problems, you can take the following measures:
v Prototype any functions that return a pointer, where possible by using the

appropriate header file.

Chapter 1. Porting from 32-bit to 64-bit mode 3

v Be sure that the type of parameter you are passing in a function (pointer or int)
call matches the type expected by the function being called.

v For applications that treat pointers as an integer type, use type long or unsigned
long.

Aligning aggregate data
Normally, structures are aligned according to the most strictly aligned member in
both 32-bit and 64-bit modes. However, since long types and pointers change size
and alignment in 64-bit, the alignment of a structure's strictest member can change,
resulting in changes to the alignment of the structure itself.

Structures that contain pointers or long types cannot be shared between 32-bit and
64-bit applications. Unions that attempt to share long and int types, or overlay
pointers onto int types can change the alignment. In general, you need to check all
but the simplest structures for alignment and size dependencies.

Any aggregate data written to a file in one mode cannot be correctly read in the
other mode. Data exchanged with other languages has similar problems.

For detailed information on aligning data structures, including structures that
contain bit fields, see Chapter 3, “Aligning data,” on page 11.

Calling Fortran code
A significant number of applications use C, C++, and Fortran together by calling
each other or sharing files. It is currently easier to modify data sizes and types on
the C and C++ sides than on the Fortran side of such applications. The following
table lists C and C++ types and the equivalent Fortran types in the different
modes.

Table 8. Equivalent C/C++ and Fortran data types

C/C++ type Fortran type

32-bit 64-bit

signed int INTEGER INTEGER

signed long INTEGER INTEGER*8

unsigned long LOGICAL LOGICAL*8

pointer INTEGER INTEGER*8

integer POINTER (8 bytes)

Related information:
Chapter 2, “Using XL C/C++ with Fortran,” on page 5

4 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Chapter 2. Using XL C/C++ with Fortran

With XL C/C++, you can call functions written in Fortran from your C and C++
programs. This section discusses some programming considerations for calling
Fortran code in the following areas:
v “Identifiers”
v “Corresponding data types” on page 6
v “Character and aggregate data” on page 8
v “Function calls and parameter passing” on page 8
v “Pointers to functions” on page 9
v “Sample program: C/C++ calling Fortran” on page 9 provides an example of a

C program which calls a Fortran subroutine.

For more information about language interoperability, see the information about
the BIND attribute and the interoperability of procedures in the XL Fortran
Language Reference.
Related information:
“Calling Fortran code” on page 4

Identifiers
C++ functions callable from Fortran should be declared with extern "C" to avoid
name mangling. For details, see the appropriate section about options and
conventions for mixing Fortran with C/C++ code in the XL Fortran Optimization
and Programming Guide.

You need to follow these recommendations when writing C and C++ code to call
functions that are written in Fortran:
v Avoid using uppercase letters in identifiers. Although XL Fortran folds external

identifiers to lowercase by default, the Fortran compiler can be set to distinguish
external names by case.

v Avoid using long identifier names. The maximum number of significant
characters in XL Fortran identifiers is 2501.

Note:

1. The Fortran 90 and 95 language standards require identifiers to be no more
than 31 characters; the Fortran 2003 and the Fortran 2008 standards require
identifiers to be no more than 63 characters.

© Copyright IBM Corp. 1996, 2014 5

Corresponding data types
The following table shows the correspondence between the data types available in
C/C++ and Fortran. Several data types in C have no equivalent representation in
Fortran. Do not use them when you program for interlanguage calls.

Table 9. Correspondence of data types between C/C++ and Fortran

C and C++ data
types

Fortran data types

Types
Types with kind type parameters from the
ISO_C_BINDING module

bool (C++) _Bool
(C)

LOGICAL*1 or
LOGICAL(1)

LOGICAL(C_BOOL)

char CHARACTER CHARACTER(C_CHAR)

signed char INTEGER*1 or
INTEGER(1)

INTEGER(C_SIGNED_CHAR)

unsigned char LOGICAL*1 or
LOGICAL(1)

signed short int INTEGER*2 or
INTEGER(2)

INTEGER(C_SHORT)

unsigned short
int

LOGICAL*2 or
LOGICAL(2)

int INTEGER*4 or
INTEGER(4)

INTEGER(C_INT)

unsigned int LOGICAL*4 or
LOGICAL(4)

signed long int INTEGER*8 or
INTEGER(8)

INTEGER(C_LONG)

unsigned long
int

INTEGER*8 or
INTEGER(8)

signed long long
int

INTEGER*8 or
INTEGER(8)

INTEGER(C_LONG_LONG)

unsigned long
long int

LOGICAL*8 or
LOGICAL(8)

size_t INTEGER*8 or
INTEGER(8)

INTEGER(C_SIZE_T)

intptr_t INTEGER*8 or
INTEGER(8)

INTEGER(C_INTPTR_T)

intmax_t INTEGER*8 or
INTEGER(8)

INTEGER(C_INTMAX_T)

int8_t INTEGER*1 or
INTEGER(1)

INTEGER(C_INT8_T)

int16_t INTEGER*2 or
INTEGER(2)

INTEGER(C_INT16_T)

int32_t INTEGER*4 or
INTEGER(4)

INTEGER(C_INT32_T)

int64_t INTEGER*8 or
INTEGER(8)

INTEGER(C_INT64_T)

int_least8_t INTEGER*1 or
INTEGER(1)

INTEGER(C_INT_LEAST8_T)

6 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Table 9. Correspondence of data types between C/C++ and Fortran (continued)

C and C++ data
types

Fortran data types

Types
Types with kind type parameters from the
ISO_C_BINDING module

int_least16_t INTEGER*2 or
INTEGER(2)

INTEGER(C_INT_LEAST16_T)

int_least32_t INTEGER*4 or
INTEGER(4)

INTEGER(C_INT_LEAST32_T)

int_least64_t INTEGER*8 or
INTEGER(8)

INTEGER(C_INT_LEAST64_T)

int_fast8_t INTEGER, INTEGER*4,
or INTEGER(4)

INTEGER(C_INT_FAST8_T)

int_fast16_t INTEGER*4 or
INTEGER(4)

INTEGER(C_INT_FAST16_T)

int_fast32_t INTEGER*4 or
INTEGER(4)

INTEGER(C_INT_FAST32_T)

int_fast64_t INTEGER*8 or
INTEGER(8)

INTEGER(C_INT_FAST64_T)

float REAL, REAL*4, or
REAL(4)

REAL(C_FLOAT)

double REAL*8, REAL(8), or
DOUBLE PRECISION

REAL(C_DOUBLE)

long double REAL*16 or REAL(16) REAL(C_LONG_DOUBLE)

float _Complex COMPLEX*4,
COMPLEX(4),
COMPLEX*8, or
COMPLEX(8)

COMPLEX(C_FLOAT_COMPLEX)

double
_Complex

COMPLEX*8,
COMPLEX(8),
COMPLEX*16, or
COMPLEX(16)

COMPLEX(C_DOUBLE_COMPLEX)

long double
_Complex

COMPLEX*16,
COMPLEX(16),
COMPLEX*32, or
COMPLEX(32)

COMPLEX(C_LONG_DOUBLE_COMPLEX)

struct or union derived type

enum INTEGER*4 or
INTEGER(4)

char[n] CHARACTER*n or
CHARACTER(n)

array pointer to
type, or type []

Dimensioned variable
(transposed)

pointer to
function

Functional parameter

struct with
-fpack-struct
(-qalign)

Sequence derived type

Related information in the XL C/C++ Compiler Reference

-fpack-struct (-qalign)

Chapter 2. Using XL C/C++ with Fortran 7

Character and aggregate data
Most numeric data types have counterparts across C/C++ and Fortran. However,
character and aggregate data types require special treatment:
v C character strings are delimited by a '\0' character. In Fortran, all character

variables and expressions have a length that is determined at compile time.
Whenever Fortran passes a string argument to another routine, it appends a
hidden argument that provides the length of the string argument. This length
argument must be explicitly declared in C. The C code should not assume a null
terminator; the supplied or declared length should always be used.

v An n-element C/C++ array is indexed with 0...n-1, whereas an n-element
Fortran array is typically indexed with 1...n. In addition, Fortran supports
user-specified bounds while C/C++ does not.

v C stores array elements in row-major order (array elements in the same row
occupy adjacent memory locations). Fortran stores array elements in ascending
storage units in column-major order (array elements in the same column occupy
adjacent memory locations). The following table shows how a two-dimensional
array declared by A[3][2] in C and by A(3,2) in Fortran, is stored:

Table 10. Storage of a two-dimensional array

Storage unit C and C++ element name Fortran element name

Lowest A[0][0] A(1,1)

A[0][1] A(2,1)

A[1][0] A(3,1)

A[1][1] A(1,2)

A[2][0] A(2,2)

Highest A[2][1] A(3,2)

v In general, for a multidimensional array, if you list the elements of the array in
the order they are laid out in memory, a row-major array will be such that the
rightmost index varies fastest, while a column-major array will be such that the
leftmost index varies fastest.

Function calls and parameter passing
Functions must be prototyped equivalently in both C/C++ and Fortran.

In C and C++, by default, all function arguments are passed by value, and the
called function receives a copy of the value passed to it. In Fortran, by default,
arguments are passed by reference, and the called function receives the address of
the value passed to it. You can use the Fortran %VAL built-in function or the
VALUE attribute to pass by value. Refer to the XL Fortran Language Reference for
more information.

For call-by-reference (as in Fortran), the address of the parameter is passed in a
register. When passing parameters by reference, if you write C or C++ functions
that call a program written in Fortran, all arguments must be pointers, or scalars
with the address operator.

For more information about interlanguage calls to functions or routines, see the
information about interlanguage calls in the XL Fortran Optimization and
Programming Guide.

8 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Pointers to functions
A function pointer is a data type whose value is a function address. In Fortran, a
dummy argument that appears in an EXTERNAL statement is a function pointer.
Starting from the Fortran 2003 standard, Fortran variables of type C_FUNPTR are
interoperable with function pointers. Function pointers are supported in contexts
such as the target of a call statement or an actual argument of such a statement.

Sample program: C/C++ calling Fortran
The following example illustrates how program units written in different languages
can be combined to create a single program. It also demonstrates parameter
passing between C/C++ and Fortran subroutines with different data types as
arguments. The example includes the following source files:
v The main program source file: example.c
v The Fortran add function source file: add.f

Main program source file: example.c
#include <stdio.h>
extern double add(int *, double [], int *, double []);

double ar1[4]={1.0, 2.0, 3.0, 4.0};
double ar2[4]={5.0, 6.0, 7.0, 8.0};

main()
{
int x, y;
double z;

x = 3;
y = 3;

z = add(&x, ar1, &y, ar2); /* Call Fortran add routine */
/* Note: Fortran indexes arrays 1..n */
/* C indexes arrays 0..(n-1) */

printf("The sum of %1.0f and %1.0f is %2.0f \n",
ar1[x-1], ar2[y-1], z);
}

Fortran add function source file: add.f
REAL*8 FUNCTION ADD (A, B, C, D)
REAL*8 B,D
INTEGER*4 A,C
DIMENSION B(4), D(4)
ADD = B(A) + D(C)
RETURN
END

Compile the main program and Fortran add function source files as follows:
xlc -c example.c
xlf -c add.f

Link the object files from compile step to create executable add:
xlc -o add example.o add.o

Execute binary:
./add

Chapter 2. Using XL C/C++ with Fortran 9

The output is as follows:
The sum of 3 and 7 is 10

10 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Chapter 3. Aligning data

XL C/C++ provides many mechanisms for specifying data alignment at the levels
of individual variables, members of aggregates, entire aggregates, and entire
compilation units. If you are porting applications between different platforms, or
between 32-bit and 64-bit modes, you need to take into account the differences
between alignment settings available in the different environments, to prevent
possible data corruption and deterioration in performance. In particular, vector
types have special alignment requirements which, if not followed, can produce
incorrect results. For more information, see the AltiVec Technology Programming
Interface Manual.

XL C/C++ provides alignment modes and alignment modifiers for specifying data
alignment. Using alignment modes, you can set alignment defaults for all data
types for a compilation unit (or subsection of a compilation unit), by specifying a
predefined suboption.

Using alignment modifiers, you can set the alignment for specific variables or data
types within a compilation unit by specifying the exact number of bytes that
should be used for the alignment.

“Using alignment modes” discusses the default alignment modes for all data types
on the different platforms and addressing models, the suboptions and pragmas
that you can use to change or override the defaults, and rules for the alignment
modes for simple variables, aggregates, and bit fields.

“Using alignment modifiers” on page 14 discusses the different specifiers, pragmas,
and attributes you can use in your source code to override the alignment mode
currently in effect, for specific variable declarations. It also provides the rules that
govern the precedence of alignment modes and modifiers during compilation.

Related information in the XL C/C++ Compiler Reference

-maltivec
Related external information

AltiVec Technology Programming Interface Manual, available at
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf

Using alignment modes
Each data type that is supported by XL C/C++ is aligned along byte boundaries
according to platform-specific default alignment modes. The default alignment
mode is linuxppc.

Each of the valid alignment modes is defined in Table 11, which provides the
alignment value, in bytes, for scalar variables of all data types.

Table 11. Alignment settings (values given in bytes)

Data type Storage

Alignment setting

linuxppc bit_packed

_Bool (C), bool (C++) 1 1 1

© Copyright IBM Corp. 1996, 2014 11

http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf

Table 11. Alignment settings (values given in bytes) (continued)

Data type Storage

Alignment setting

linuxppc bit_packed

char, signed char, unsigned char 1 1 1

wchar_t 4 4 1

int, unsigned int 4 4 1

short int, unsigned short int 2 2 1

long int, unsigned long int 8 8 1

long long 8 8 1

float 4 4 1

double 8 8 1

long double 8 8 1

long double with -qldbl128 16 16 1

pointer 8 8 1

vector types 16 16 1

If you generate data with an application on one platform and read the data with
an application on another platform, it is recommended that you use the bit_packed
mode, which results in equivalent data alignment on all platforms.

Notes:

v Vectors in a bit-packed structure may not be correctly aligned unless you take
extra action to ensure their alignment.

v Vectors might suffer from alignment issues if they are accessed via
heap-allocated storage or through pointer arithmetic. For example, double
my_array[1000] __attribute__((__aligned__(16))) is 16-byte aligned while
my_array[1] is not. How my_array[i] is aligned is determined by the value of i.

“Alignment of aggregates” discusses the rules for the alignment of entire
aggregates and provides examples of aggregate layouts. “Alignment of bit-fields”
on page 13 discusses additional rules and considerations for the use and alignment
of bit fields and provides an example of bit-packed alignment.

Related information in the XL C/C++ Compiler Reference

-fpack-struct (-qalign)

Alignment of aggregates
The data contained in Table 11 on page 11 (in “Using alignment modes” on page
11) apply to scalar variables, and variables that are members of aggregates such as
structures, unions, and classes. The following rules apply to aggregate variables,
namely structures, unions or classes, as a whole (in the absence of any modifiers):
v For all alignment modes, the size of an aggregate is the smallest multiple of its

alignment value that can encompass all of the members of the aggregate.

v C Empty aggregates are assigned a size of 0 bytes. As a result, two
distinct variables might have the same address.

12 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

v C++ Empty aggregates are assigned a size of 1 byte. Note that static data
members do not participate in the alignment or size of an aggregate; therefore a
structure or class containing only a single static data member has a size of 1
byte.

v For all alignment modes, the alignment of an aggregate is equal to the largest
alignment value of any of its members. With the exception of packed alignment
modes, members whose natural alignment is smaller than that of their
aggregate's alignment are padded with empty bytes.

v Aligned aggregates can be nested, and the alignment rules applicable to each
nested aggregate are determined by the alignment mode that is in effect when a
nested aggregate is declared.

Notes:

v C++ The C++ compiler might generate extra fields for classes that contain
base classes or virtual functions. Objects of these types might not conform to the
usual mappings for aggregates.

v The alignment of an aggregate must be the same in all compilation units. For
example, if the declaration of an aggregate is in a header file and you include
that header file into two distinct compilations units, choose the same alignment
mode for both compilations units.

For rules on the alignment of aggregates containing bit fields, see “Alignment of
bit-fields.”

Alignment of bit-fields
You can declare a bit-field as a _Bool (C), C++ bool (C++), char, signed char,
unsigned char, short, unsigned short C++ , int, unsigned int, long, unsigned
long, C++ long long, or unsigned long long C++ data type. The alignment
of a bit-field depends on its base type and the compilation mode.

C The length of a bit-field cannot exceed the length of its base type. In
extended mode, you can use the sizeof operator on a bit-field. The sizeof
operator on a bit-field returns the size of the base type. C

C++ The length of a bit-field can exceed the length of its base type, but the
remaining bits are used to pad the field, and do not actually store any value.

C++

However, alignment rules for aggregates containing bit-fields are different
depending on the alignment mode in effect. These rules are described below.

Rules for Linux PowerPC® alignment
v Bit-fields are allocated from a bit-field container. The size of this container is

determined by the declared type of the bit-field. For example, a char bit-field
uses an 8-bit container, and an int bit-field uses 32 bits. The container must be
large enough to contain the bit-field, as the bit-field will not be split across
containers.

v Containers are aligned in the aggregate as if they start on a natural boundary for
that type of container. Bit-fields are not necessarily allocated at the start of the
container.

v If a zero-length bit-field is the first member of an aggregate, it has no effect on
the alignment of the aggregate and is overlapped by the next data member. If a

Chapter 3. Aligning data 13

zero-length bit-field is a non-first member of the aggregate, it pads to the next
alignment boundary determined by its base declared type but does not affect the
alignment of the aggregate.

v Unnamed bit-fields do not affect the alignment of the aggregate.

Rules for bit-packed alignment
v Bit-fields have an alignment of 1 byte and are packed with no default padding

between bit-fields.
v A zero-length bit-field causes the next member to start at the next byte

boundary. If the zero-length bit-field is already at a byte boundary, the next
member starts at this boundary. A non-bit-field member that follows a bit-field is
aligned on the next byte boundary.

Using alignment modifiers
XL C/C++ also provides alignment modifiers, with which you can exercise even
finer-grained control over alignment, at the level of declaration or definition of
individual variables or aggregate members. Available modifiers are as follows:

#pragma pack(...)

Valid application:
The entire aggregate (as a whole) immediately following the directive.

Effect: Sets the maximum alignment of the members of the aggregate to which it
applies, to a specific number of bytes. Also allows a bit-field to cross a
container boundary. Used to reduce the effective alignment of the selected
aggregate.

Valid values:
n: where n is 1, 2, 4, 8, or 16. That is, structure members are aligned on
n-byte boundaries or on their natural alignment boundary, whichever is
less. nopack: disables packing. pop: removes the previous value added with
#pragma pack. Note: empty brackets has the same functionality as pop.

__attribute__((aligned(n)))

Valid application:
As a variable attribute, it applies to a single aggregate (as a whole), namely
a structure, union, or class; or to an individual member of an aggregate.1

As a type attribute, it applies to all aggregates declared of that type. If it is
applied to a typedef declaration, it applies to all instances of that type.2

Effect:
Sets the minimum alignment of the specified variable (or variables) to a
specific number of bytes. Typically used to increase the effective alignment
of the selected variables.

Valid values:
n must be a positive power of 2, or NIL. NIL can be specified as
either __attribute__((aligned())) or __attribute__((aligned)); this is
the same as specifying the maximum system alignment (16 bytes on all
UNIX platforms).

__attribute__((packed))

Valid application:
As a variable attribute, it applies to simple variables or individual
members of an aggregate, namely a structure or class1. As a type attribute,
it applies to all members of all aggregates declared of that type.

14 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Effect: Sets the maximum alignment of the selected variable or variables, to which
it applies, to the smallest possible alignment value, namely one byte for a
variable and one bit for a bit field.

Notes:

1. In a comma-separated list of variables in a declaration, if the modifier is placed
at the beginning of the declaration, it applies to all the variables in the
declaration. Otherwise, it applies only to the variable immediately preceding it.

2. Depending on the placement of the modifier in the declaration of a struct, it
can apply to the definition of the type, and hence applies to all instances of that
type; or it can apply to only a single instance of the type. For details, see the
information about type attributes in the XL C/C++ Language Reference.
Related information in the XL C/C++ Compiler Reference

#pragma pack
Related information in the XL C/C++ Language Reference

The aligned type attribute (IBM extension)

The packed type attribute (IBM extension)

Type attributes (IBM extension)

The aligned variable attribute (IBM extension)

The packed variable attribute (IBM extension)

Chapter 3. Aligning data 15

16 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Chapter 4. Handling floating-point operations

The following sections provide reference information, portability considerations,
and suggested procedures for using compiler options to manage floating-point
operations:
v “Floating-point formats”
v “Handling multiply-add operations”
v “Compiling for strict IEEE conformance”
v “Handling floating-point constant folding and rounding” on page 18
v “Handling floating-point exceptions” on page 20

Floating-point formats
XL C/C++ supports the following binary floating-point formats:
v 32-bit single precision, with an approximate absolute normalized range of 0 and

10-38 to 1038 and precision of about 7 decimal digits
v 64-bit double precision, with an approximate absolute normalized range of 0 and

10-308 to 10308 and precision of about 16 decimal digits
v 128-bit extended precision, with slightly greater range than double-precision

values, and with a precision of about 32 decimal digits

Note that the long double type may represent either double-precision or
extended-precision values, depending on the setting of the -qldbl128 compiler
option. The default is 128 bits. For compatibility with older compilations, you can
use -qnoldbl128 if you need long double to be 64 bits.

Handling multiply-add operations
By default, the compiler generates a single non-IEEE 754 compatible multiply-add
instruction for binary floating-point expressions such as a+b*c, partly because one
instruction is faster than two. Because no rounding occurs between the multiply
and add operations, this might also produce a more precise result. However, the
increased precision might lead to different results from those obtained in other
environments, and might cause x*y-x*y to produce a nonzero result. To avoid these
issues, you can suppress the generation of multiply-add instructions by using the
-qfloat=nomaf option.

Related information in the XL C/C++ Compiler Reference

-qfloat

Compiling for strict IEEE conformance
By default, XL C/C++ follows most but not all of the rules in the IEEE standard. If
you compile with the -qnostrict option, which is enabled by default at
optimization level -O3 or higher, some IEEE floating-point rules are violated in
ways that can improve performance but might affect program correctness. To avoid
this issue and to compile for strict compliance with the IEEE standard, use the
following options:
v Use the -qfloat=nomaf compiler option.

© Copyright IBM Corp. 1996, 2014 17

v If the program changes the rounding mode at run time, use the -qfloat=rrm
option.

v If the data or program code contains signaling NaN values (NaNS), use any of
the following groups of options. (A signaling NaN is different from a quiet NaN;
you must explicitly code it into the program or data or create it by using the
-qinitauto compiler option.)
– The -qfloat=nans and -qstrict=nans options
– The -qfloat=nans and -qstrict options

v If you compile with -O3, -O4, or -O5, include the option -qstrict after it. You
can also use the suboptions of -qstrict to refine the level of control for the
transformations performed by the optimizers.

Related information:
“Advanced optimization” on page 34

Related information in the XL C/C++ Compiler Reference

-qfloat

-qstrict

-qinitauto

Handling floating-point constant folding and rounding
By default, the compiler replaces most operations involving constant operands
with their result at compile time. This process is known as constant folding.
Additional folding opportunities might occur with optimization or with the
-qnostrict option. The result of a floating-point operation folded at compile time
normally produces the same result as that obtained at execution time, except in the
following cases:
v The compile-time rounding mode is different from the execution-time rounding

mode. By default, both are round-to-nearest; however, if your program changes
the execution-time rounding mode, to avoid differing results, perform either of
the following operations:
– Change the compile-time rounding mode to match the execution-time mode,

by compiling with the appropriate -y option. For more information and an
example, see “Matching compile-time and runtime rounding modes” on page
19.

– Suppress folding, by compiling with the -qfloat=nofold option.
v Expressions like a+b*c are partially or fully evaluated at compile time. The

results might be different from those produced at execution time, because b*c
might be rounded before being added to a, while the runtime multiply-add
instruction does not use any intermediate rounding. To avoid differing results,
perform either of the following operations:
– Suppress the use of multiply-add instructions, by compiling with the

-qfloat=nomaf option.
– Suppress folding, by compiling with the -qfloat=nofold option.

v An operation produces an infinite, NaN, or underflow to zero result.
Compile-time folding prevents execution-time detection of an exception, even if
you compile with the -ftrapping-math (-qflttrap) option. To avoid missing
these exceptions, suppress folding with the -qfloat=nofold option.

Related information:
“Handling floating-point exceptions” on page 20

18 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Related information in the XL C/C++ Compiler Reference

-qfloat

-qstrict

-ftrapping-math (-qflttrap)

Matching compile-time and runtime rounding modes
The default rounding mode used at compile time and run time is round-to-nearest,
ties to even. If your program changes the rounding mode at run time, the results of
a floating-point calculation might be slightly different from those that are obtained
at compile time. The following example illustrates this:
#include <float.h>
#include <fenv.h>
#include <stdio.h>

int main ()
{
volatile double one = 1.f, three = 3.f; /* volatiles are not folded */
double one_third;

one_third = 1. / 3.; /* folded */
printf ("1/3 with compile-time rounding = %.17f\n", one_third);

fesetround (FE_TOWARDZERO);
one_third = one / three; /* not folded */

printf ("1/3 with execution-time rounding to zero = %.17f\n", one_third);

fesetround (FE_TONEAREST);
one_third = one / three; /* not folded */

printf ("1/3 with execution-time rounding to nearest = %.17f\n", one_third);

fesetround (FE_UPWARD);
one_third = one / three; /* not folded */

printf ("1/3 with execution-time rounding to +infinity = %.17f\n", one_third);

fesetround (FE_DOWNWARD);
one_third = one / three; /* not folded */

printf ("1/3 with execution-time rounding to -infinity = %.17f\n", one_third);

return 0;
}

When compiled with the default options, this code produces the following results:
1/3 with compile-time rounding = 0.33333333333333331
1/3 with execution-time rounding to zero = 0.33333333333333331
1/3 with execution-time rounding to nearest = 0.33333333333333331
1/3 with execution-time rounding to +infinity = 0.33333333333333337
1/3 with execution-time rounding to -infinity = 0.33333333333333331

Because the fourth computation changes the rounding mode to round-to-infinity,
the results are slightly different from the first computation, which is performed at
compile time, using round-to-nearest. If you do not use the -qfloat=nofold option
to suppress all compile-time folding of floating-point computations, it is
recommended that you use the -y compiler option with the appropriate suboption

Chapter 4. Handling floating-point operations 19

to match compile-time and runtime rounding modes. In the previous example,
compiling with -yp (round-to-infinity) produces the following result for the first
computation:
1/3 with compile-time rounding = 0.33333333333333337

In general, if the rounding mode is changed to rounding to +infinity, -infinity, or
zero, it is recommended that you also use the -qfloat=rrm option.

Related information in the XL C/C++ Compiler Reference

-qfloat

-y

Handling floating-point exceptions
By default, invalid operations such as division by zero, division by infinity,
overflow, and underflow are ignored at run time. However, you can use the
-ftrapping-math (-qflttrap) option or call C or operating system functions to
detect these types of exceptions. If you enable floating-point traps without using
the -ftrapping-math (-qflttrap) option, use the -qfloat=fenv option.

In addition, you can add suitable support code to your program to make program
execution continue after an exception occurs and to modify the results of
operations causing exceptions.

Because, however, floating-point computations involving constants are usually
folded at compile time, the potential exceptions that would be produced at runtime
might not occur. To ensure that the -ftrapping-math (-qflttrap) option traps all
runtime floating-point exceptions, you can use the -qfloat=nofold option to
suppress all compile-time folding.

Related information in the XL C/C++ Compiler Reference

-qfloat

-ftrapping-math (-qflttrap)

20 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Chapter 5. Using C++ constructors

C++11

Before C++11, common initialization in multiple constructors of the same class
cannot be concentrated in one place in a robust and maintainable manner. Starting
from C++11, you can use the following basic approach to solve this problem:

Using delegating constructors:
With the delegating constructors feature, you can concentrate common
initialization in one constructor, which can make the program more
readable and maintainable. Delegating constructors help reduce the code
size and collective size of the object files.

C++11

Related information:
“Using delegating constructors (C++11)”

Related information in the XL C/C++ Compiler Reference

-qlanglvl

Using delegating constructors (C++11)

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation might change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

Syntactically, delegating constructors and target constructors present the same
interface as other constructors.

Consider the following points when you use the delegating constructors feature:
v Call the target constructor implementation in such a way that virtual bases,

direct nonvirtual bases, and class members are initialized by the target
constructor as appropriate.

v The feature has minimal impact on compile-time and runtime performance.
However, use of default arguments with an existing constructor is recommended
in place of a delegating constructor where possible. Without inlining and
interprocedural analysis, runtime performance might degrade because of
function call overhead and increased opacity.

© Copyright IBM Corp. 1996, 2014 21

22 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Chapter 6. The C++ template model

In C++, you can use a template to declare a set of related following entities:
v Classes (including structures)
v Functions
v Static data members of template classes

Each compiler implements templates according to a model that determines the
meaning of a template at various stages of the translation of a program. In
particular, the compiler determines what the various constructs in a template mean
when the template is instantiated. Name lookup is an essential ingredient of the
compilation model.

Template instantiation is a process that generates types and functions from generic
template definitions. The concept of instantiation of C++ templates is fundamental
but also intricate because the definitions of entities generated by a template are no
longer limited to a single location in the source code. The location of the template,
the location where the template is used, and the locations where the template
arguments are defined all contribute to the meaning of the entity.

XL C/C++ supports Greedy instantiation. The compiler generates a template
instantiation in each compilation unit that uses it. The linker discards the
duplicates.

Related information in the XL C/C++ Compiler Reference

-qtmplinst (C++ only)

© Copyright IBM Corp. 1996, 2014 23

24 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Chapter 7. Constructing a library

You can include static and shared libraries in your C and C++ applications.

“Compiling and linking a library” describes how to compile your source files into
object files for inclusion in a library, how to link a library into the main program,
and how to link one library into another.

“Initializing static objects in libraries (C++)” on page 26 describes how to use
priorities to control the order of initialization of objects across multiple files in a
C++ application.

Compiling and linking a library
This section describes how to compile your source files into object files for
inclusion in a library, how to link a library into the main program, and how to link
one library into another.
Related information:
Dynamic and static linking

Compiling a static library
To compile a static library, follow this procedure:
1. Compile each source file to get an object file. For example:

xlc -c test.c example.c

2. Use the ar command to add the generated object files to an archive library file.
For example:
ar -rv libex.a test.o example.o

Compiling a shared library
To compile a shared library, follow this procedure:
1. Compile your source files to get an object file. Note that in the case of

compiling a shared library, the -fPIC (-qpic) compiler option is also used. For
example:
xlc -fPIC -c foo.c

2. Use the -shared (-qmkshrobj) compiler option to create a shared object from
the generated object files. For example:
xlc -shared -o libfoo.so foo.o

Related information in the XL C/C++ Compiler Reference

-fPIC (-qpic)

-shared (-qmkshrobj)

Linking a library to an application
You can use the following command string to link a static or shared library to your
main program. For example:
xlc -o myprogram main.c -Ldirectory [-Rdirectory] -ltest

© Copyright IBM Corp. 1996, 2014 25

At compile time, you instruct the linker to search for libtest.so in the first
directory specified via the -L option. If libtest.so is not found, the linker searches
for libtest.a. If neither file is found, the search continues with the next directory
specified via the -L option.

At run time, the runtime linker searches for libtest.so in the first directory
specified via the -R option. If libtest.so is not found, the search continues with
the next directory specified via the -R option. The path specified by the -R option
can be overridden at run time via the LD_LIBRARY_PATH environment variable.

For additional linkage options, including options that modify the default behavior,
see the operating system ld documentation .

Related information in the XL C/C++ Compiler Reference

-l

-L

-R

Linking a shared library to another shared library
Just as you link modules into an application, you can create dependencies between
shared libraries by linking them together. For example:
xlc -shared -o mylib.so myfile.o -Ldirectory -Rdirectory -ltest

Related information in the XL C/C++ Compiler Reference

-shared (-qmkshrobj)

-R

-L

Initializing static objects in libraries (C++)
The C++ language definition specifies that all non-local objects with constructors
from all the files included in the program must be properly constructed before the
main function in a C++ program is executed. Although the language definition
specifies the order of initialization for these objects within a file (which follows the
order in which they are declared), it does not specify the order of initialization for
these objects across files and libraries. You might want to specify the initialization
order of static objects declared in various files and libraries in your program.

To specify an initialization order for objects, you assign relative priority numbers to
objects. The mechanisms by which you can specify priorities for entire files or
objects within files are discussed in “Assigning priorities to objects.” The
mechanisms by which you can control the initialization order of objects across
modules are discussed in “Order of object initialization across libraries” on page
27.

Assigning priorities to objects
You can assign a priority number to objects and files within a single library, and
the objects will be initialized at run time according to the order of priority.
However, because of the differences in the way modules are loaded and objects
initialized on the different platforms, the levels at which you can assign priorities
vary among the different platforms as follows:

26 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Set the priority level for an entire file
To use this approach, specify the -qpriority compiler option during
compilation. By default, all objects within a single file are assigned the
same priority level; they are initialized in the order in which they are
declared, and they are terminated in reverse declaration order.

Set the priority level for individual objects
To use this approach, use init_priority variable attributes in the source
files. The init_priority attribute can be applied to objects in any
declaration order. On Linux, the objects are initialized according to their
priority and terminated in reverse priority across compilation units.

Using priority numbers

Priority numbers can range from 101 to 65535. The smallest priority number that
you can specify, 101, is initialized first. The largest priority number, 65535, is
initialized last. If you do not specify a priority level, the default priority is 65535.

The examples below show how to specify the priority of objects within a single file
and across two files. “Order of object initialization across libraries” provides
detailed information on the order of initialization of objects.

Related information in the XL C/C++ Compiler Reference

-qpriority

-shared (-qmkshrobj)
Related information in the XL C/C++ Language Reference

The init_priority variable attribute

Order of object initialization across libraries
Each static library and shared library is loaded and initialized at runtime in reverse
link order, once all of its dependencies have been loaded and initialized. Link
order is the order in which each library was listed on the command line during
linking into the main application. For example, if library A calls library B, library B
is loaded before library A.

As each module is loaded, objects are initialized in order of priority according to
the rules outlined in “Assigning priorities to objects” on page 26. If objects do not
have priorities assigned or have the same priorities, object files are initialized in
reverse link order — where link order is the order in which the files were given on
the command line during linking into the library — and the objects within the files
are initialized according to their declaration order. Objects are terminated in
reverse order of their construction.

Example of object initialization across libraries

In this example, the following modules are used:
v main.out, the executable containing the main function
v libS1 and libS2, two shared libraries
v libS3 and libS4, two shared libraries that are dependencies of libS1
v libS5 and libS6, two shared libraries that are dependencies of libS2

Chapter 7. Constructing a library 27

The source files are compiled into object files with the following command strings.
You must use the -fPIC (-qpic) option to compile what is to be included in a
shared library.
xlC -qpriority=101 -c fileA.C -o fileA.o
xlC -qpriority=150 -c fileB.C -o fileB.o
xlC -c fileC.C -o fileC.o
xlC -c fileD.C -o fileD.o
xlC -c fileE.C -o fileE.o
xlC -c fileF.C -o fileF.o
xlC -qpriority=300 -c fileG.C -o fileG.o
xlC -qpriority=200 -c fileH.C -o fileH.o
xlC -qpriority=500 -c fileI.C -o fileI.o
xlC -c fileJ.C -o fileJ.o
xlC -c fileK.C -o fileK.o
xlC -qpriority=600 -c fileL.C -o fileL.o

The dependent libraries are created with the following command strings:
xlC -shared -o libS3.so fileE.o fileF.o
xlC -shared -o libS4.so fileG.o fileH.o
xlC -shared -o libS5.so fileI.o fileJ.o
xlC -shared -o libS6.so fileK.o fileL.o

The dependent libraries are linked with their parent libraries using the following
command strings:
xlC -shared -o libS1.so fileA.o fileB.o -L. -R. -lS3 -lS4
xlC -shared -o libS2.so fileC.o fileD.o -L. -R. -lS5 -lS6

The parent libraries are linked with the main program with the following
command string:
xlC main.C -o main.out -L. -R. -lS1 -lS2

The following diagram shows the initialization order of the shared libraries.

4 23 1

6 5

7

fileG.o fileK.ofileE.o fileI.o

fileA.o fileC.o

fileH.o fileL.ofileF.o fileJ.o

fileB.o fileD.o

libS4 libS6libS3 libS5

libS1 libS2

-qpriority=300 -qpriority=500

-qpriority=101

-qpriority=200 -qpriority=600

-qpriority=150

main.out

Objects are initialized as follows:

Figure 1. Object initialization order on Linux

28 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Sequence Object
Priority
value Comment

1 libS6 n/a libS2 was entered last on the command line when
linked with main, and so is initialized before libS1.
However, libS5 and libS6 are dependencies of
libS2, so they are initialized first. Since it was
entered last on the command line when linked to
create libS2, libS6 is initialized first. The objects in
this library are initialized according to their priority.

2 fileL 600 The objects in fileL are initialized next (lowest
priority number in this module).

3 fileK 65535 The objects in fileK are initialized next (next priority
number in this module (default priority of 65535)).

4 libS5 n/a libS5 was entered before libS6 on the command
line when linked with libS2, so it is initialized next.
The objects in this library are initialized according to
their priority.

5 fileI 500 The objects in fileI are initialized next (lowest
priority number in this module).

6 fileJ 65535 The objects in fileJ are initialized next (next priority
number in this module (default priority of 65535)).

7 libS4 n/a libS4 is a dependency of libS1 and was entered last
on the command line when linked to create libS1, so
it is initialized next. The objects in this library are
initialized according to their priority.

8 fileH 200 The objects in fileH are initialized next (lowest
priority number in this module).

9 fileG 300 The objects in fileG are initialized next (next priority
number in this module).

10 libS3 n/a libS3 is a dependency of libS1 and was entered first
on the command line during the linking with libS1,
so it is initialized next. The objects in this library are
initialized according to their priority.

11 fileF 65535 Both fileF and fileE are assigned a default priority
of 65535. However, because fileF was listed last on
the command line when the object files were linked
into libS3, fileF is initialized first.

12 fileE 65535 Initialized next.

13 libS2 n/a libS2 is initialized next. The objects in this library
are initialized according to their priority.

14 fileD 65535 Both fileD and fileC are assigned a default priority
of 65535. However, because fileD was listed last on
the command line when the object files were linked
into libS2, fileD is initialized first.

15 fileC 65535 Initialized next.

16 libS1 libS1 is initialized next. The objects in this library
are initialized according to their priority.

17 fileA 101 The objects in fileA are initialized next (lowest
priority number in this module).

18 fileB 150 The objects in fileB are initialized next (next priority
number in this module).

Chapter 7. Constructing a library 29

Sequence Object
Priority
value Comment

19 main.out n/a Initialized last. The objects in main.out are initialized
according to their priority.

Related information in the XL C/C++ Compiler Reference

-shared (-qmkshrobj)

-W

30 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Chapter 8. Optimizing your applications

The XL compilers enable development of high performance applications by
offering a comprehensive set of performance enhancing techniques that exploit the
multilayered PowerPC architecture. These performance advantages depend on
good programming techniques, thorough testing and debugging, followed by
optimization and tuning.

Distinguishing between optimization and tuning
You can use optimization and tuning separately or in combination to increase the
performance of your application. Understanding the difference between them is the
first step in understanding how the different levels, settings, and techniques can
increase performance.

Optimization

Optimization is a compiler driven process that searches for opportunities to
restructure your source code and give your application better overall performance
at run time, without significantly impacting development time. The XL compiler
optimization suite, which you control using compiler options and directives,
performs best on well-written source code that has already been through a
thorough debugging and testing process. These optimization transformations can
bring the following benefits:
v Reduce the number of instructions that your application executes to perform

critical operations.
v Restructure your object code to make optimal use of the PowerPC architecture.
v Improve memory subsystem usage.

Each basic optimization technique can result in a performance benefit, although
not all optimizations can benefit all applications. Consult the “Steps in the
optimization process” on page 32 for an overview of the common sequence of
steps that you can use to increase the performance of your application.

Tuning

While optimization applies general transformations designed to improve the
performance of any application in any supported environment, tuning offers you
opportunities to adjust specific characteristics or target execution environments of
your application to improve its performance. Even at low optimization levels,
tuning for your application and target architecture can have a positive impact on
performance. With proper tuning the compiler can make the following
improvements:
v Select more efficient machine instructions.
v Generate instruction sequences that are more relevant to your application.
v Select from more focussed optimizations to improve your code.

For instructions, see “Tuning for your system architecture” on page 38.

© Copyright IBM Corp. 1996, 2014 31

Steps in the optimization process
As you begin the optimization process, consider that not all optimization
techniques suit all applications. Trade-offs sometimes occur between an increase in
compile time, a reduction in debugging capability, and the improvements that
optimization can provide.

Learning about and experimenting with different optimization techniques can help
you strike the right balance for your XL compiler applications while achieving the
best possible performance. Also, though it is unnecessary to hand-optimize your
code, compiler-friendly programming can be extremely beneficial to the
optimization process. Unusual constructs can obscure the characteristics of your
application and make performance optimization difficult. Use the steps in this
section as a guide for optimizing your application.
1. The Basic optimization step begins your optimization processes at levels 0 and

2.
2. The Advanced optimization step exposes your application to more intense

optimizations at levels 3, 4, and 5.
3. The Using high-order loop analysis and transformations step can help you limit

loop execution time.
4. The Using interprocedural analysis step can optimize your entire application at

once.
5. The Using profile-directed feedback step focuses optimizations on specific

characteristics of your application.
6. The Debugging optimized code step can help you identify issues and problems

that can occur with optimized code.

Basic optimization
The XL compiler supports several levels of optimization, with each option level
building on the levels below through increasingly aggressive transformations and
consequently using more machine resources.

Ensure that your application compiles and executes properly at low optimization
levels before trying more aggressive optimizations. This topic discusses two
optimizations levels, listed with complementary options in Table 12. The table also
includes a column for compiler options that can have a performance benefit at that
optimization level for some applications.

Table 12. Basic optimizations

Optimization level
Additional options
implied by default

Complementary
options

Other options with
possible benefits

-O0 None -mcpu None

-O2 -qmaxmem=8192 -mcpu
-mtune

-qmaxmem=-1
-qhot=level=0

Optimizing at level 0
Benefits at level 0
v Obtains minimal performance improvement with minimal impact on machine

resources
v Exposes some source code problems to help in the debugging process

32 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Begin your optimization process at -O0 which the compiler already specifies by
default. This level performs basic analytical optimization by removing obviously
redundant code, and it can result in better compile time. It also ensures your code
is algorithmically correct so you can move forward to more complex optimizations.
-O0 also includes some redundant instruction elimination and constant folding. The
-qfloat=nofold option can be used to suppress folding floating-point operations.
Optimizing at this level accurately preserves all debugging information and can
expose problems in existing code, such as uninitialized variables and bad casting.

Additionally, specifying -mcpu at this level targets your application for a particular
machine and can significantly improve performance by ensuring that your
application takes advantage of all applicable architectural benefits.

For more information on tuning, see “Tuning for your system architecture” on
page 38.

Related information in the XL C/C++ Compiler Reference

-mcpu

Optimizing at level 2
Benefits at level 2
v Eliminates redundant code
v Performs basic loop optimization
v Structures code to take advantage of -mcpu and -mtune settings

After successfully compiling, executing, and debugging your application using -O0,
recompiling at -O2 opens your application to a set of comprehensive low-level
transformations that apply to subprogram or compilation unit scopes and can
include some inlining. Optimizations at -O2 are a relative balance between
increasing performance while limiting the impact on compilation time and system
resources. You can increase the memory available to some of the optimizations in
the -O2 portfolio by providing a larger value for the -qmaxmem option. Specifying
-qmaxmem=-1 allows the optimizer to use memory as needed without checking for
limits but does not change the transformations the optimizer applies to your
application at -O2.

In C, compile with -qlibansi unless your application defines functions with names
identical to those of library functions. If you encounter problems with -O2, consider
using -qalias=noansi rather than turning off optimization.

Also, ensure that pointers in your C code follow these type restrictions:
v Generic pointers can be char* or void*.
v Mark all shared variables and pointers to shared variables volatile.

Starting to tune at O2

Choosing the right hardware architecture target or family of targets becomes even
more important at -O2 and higher. By targeting the proper hardware, the optimizer
can make the best use of the hardware facilities available. If you choose a family of
hardware targets, the -mtune option can direct the compiler to emit code that is
consistent with the architecture choice and can execute optimally on the chosen
tuning hardware target. With this option, you can compile for a general set of
targets and have the code run best on a particular target.

Chapter 8. Optimizing your applications 33

For details on the -mcpu and -mtune options, see the “Tuning for your system
architecture” on page 38 section.

The -O2 option can perform a number of additional optimizations as follows:
v Common subexpression elimination: Eliminates redundant instructions.
v Constant propagation: Evaluates constant expressions at compile-time.
v Dead code elimination: Eliminates instructions that a particular control flow

does not reach, or that generate an unused result.
v Dead store elimination: Eliminates unnecessary variable assignments.
v Global register allocation: Globally assigns user variables to registers.
v Value numbering: Simplifies algebraic expressions, by eliminating redundant

computations.
v Instruction scheduling for the target machine.
v Loop unrolling and software pipelining.
v Moving loop-invariant code out of loops.
v Simplifying control flow.
v Strength reduction and effective use of addressing modes.
v Widening, which merges adjacent load/stores and other operations.
v Pointer aliasing improvements to enhance other optimizations.

Even with -O2 optimizations, some useful information about your source code is
made available to the debugger if you specify -g. Using a higher -g level increases
the information provided to the debugger but reduces the optimization that can be
done. Conversely, higher optimization levels can transform code to an extent to
which debugging information is no longer accurate.

Advanced optimization
Higher optimization levels can have a tremendous impact on performance, but
some trade-offs can occur in terms of code size, compile time, resource
requirements, and numeric or algorithmic precision.

After applying “Basic optimization” on page 32 and successfully compiling and
executing your application, you can apply more powerful optimization tools. The
XL compiler optimization portfolio includes many options for directing advanced
optimization, and the transformations that your application undergoes are largely
under your control. The discussion of each optimization level in Table 13 includes
information on the performance benefits and the possible trade-offs and
information on how you can help guide the optimizer to find the best solutions for
your application.

Table 13. Advanced optimizations

Optimization Level
Additional options
implied

Complementary
options

Options with
possible benefits

-O3 -qnostrict
-qmaxmem=-1
-qhot=level=0

-mcpu
-mtune

-qpdf

34 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Table 13. Advanced optimizations (continued)

Optimization Level
Additional options
implied

Complementary
options

Options with
possible benefits

-O4 -qnostrict
-qmaxmem=-1
-qhot
-qipa
-mcpu=auto
-mtune=auto
-qcache=auto

-mcpu
-mtune
-qcache

-qpdf

-O5 All of -O4
-qipa=level=2

-mcpu
-mtune
-qcache

-qpdf

When you compile programs with any of the following sets of options:
v -qhot -qignerrno -qnostrict

v -O3 -qhot

v -O4

v -O5

the compiler automatically attempts to vectorize calls to system math functions by
calling the equivalent vector functions in the Mathematical Acceleration Subsystem
libraries (MASS), with the exceptions of functions vdnint, vdint, vcosisin,
vscosisin, vqdrt, vsqdrt, vrqdrt, vsrqdrt, vpopcnt4, and vpopcnt8. If the compiler
cannot vectorize, it automatically tries to call the equivalent MASS scalar functions.
For automatic vectorization or scalarization, the compiler uses versions of the
MASS functions contained in the system library libxlopt.a.

In addition to any of the preceding sets of options, when the -qipa option is in
effect, if the compiler cannot vectorize, it tries to inline the MASS scalar functions
before deciding to call them.

Optimizing at level 3
Benefits at level 3
v In-depth memory access analysis
v Better loop scheduling
v High-order loop analysis and transformations (-qhot=level=0)
v Inlining of small procedures within a compilation unit by default
v Eliminating implicit compile-time memory usage limits

Specifying -O3 initiates more intense low-level transformations that remove many
of the limitations present at -O2. For instance, the optimizer no longer checks for
memory limits, by defaulting to -qmaxmem=-1. Additionally, optimizations
encompass larger program regions and attempt more in-depth analysis. While not
all applications contain opportunities for the optimizer to provide a measurable
increase in performance, most applications can benefit from this type of analysis.

Potential trade-offs at level 3

With the in-depth analysis of -O3 comes a trade-off in terms of compilation time
and memory resources. Also, because -O3 implies -qnostrict, the optimizer can

Chapter 8. Optimizing your applications 35

alter certain floating-point semantics in your application to gain execution speed.
This typically involves precision trade-offs as follows:
v Reordering of floating-point computations
v Reordering or elimination of possible exceptions, such as division by zero or

overflow
v Using alternative calculations that might give slightly less precise results or not

handle infinities or NaNs in the same way

You can still gain most of the -O3 benefits while preserving precise floating-point
semantics by specifying -qstrict. Compiling with -qstrict is necessary if you
require the same absolute precision in floating-point computational accuracy as
you get with -O0, -O2, or -qnoopt results. The option -qstrict=ieeefp also ensures
adherence to all IEEE semantics for floating-point operations. If your application is
sensitive to floating-point exceptions or the order of evaluation for floating-point
arithmetic, compiling with -qstrict, -qstrict=exceptions, or -qstrict=order
helps to ensure accurate results. You should also consider the impact of the
-qstrict=precision suboption group on floating-point computational accuracy.
The precision suboption group includes the individual suboptions: subnormals,
operationprecision, association, reductionorder, and library (described in the
-qstrict option in the XL C/C++ Compiler Reference).

Without -qstrict, the difference in computation for any one source-level operation
is very small in comparison to “Basic optimization” on page 32. Although a small
difference can be compounded if the operation is in a loop structure where the
difference becomes additive, most applications are not sensitive to the changes that
can occur in floating-point semantics.

For information on the -O level syntax, see "-O -qoptimize" in the XL C/C++
Compiler Reference .

An intermediate step: adding -qhot suboptions at level 3
At -O3, the optimization includes minimal -qhot loop transformations at level=0 to
increase performance. You can further increase your performance benefit by
increasing the level and therefore the aggressiveness of -qhot. Try specifying -qhot
without any suboptions or -qhot=level=1.

For more information on -qhot, see “Using high-order loop analysis and
transformations” on page 39.

Conversely, if the application does not use loops processing arrays (which -qhot
improves), you can improve compile speed significantly, usually with minimal
performance loss by using -qnohot after -O3.

Optimizing at level 4
Benefits at level 4
v Propagation of global and argument values between compilation units
v Inlining code from one compilation unit to another
v Reorganization or elimination of global data structures
v An increase in the precision of aliasing analysis

36 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Optimizing at -O4 builds on -O3 by triggering -qipa=level=1 which performs
interprocedural analysis (IPA), optimizing your entire application as a unit. This
option is particularly pertinent to applications that contain a large number of
frequently used routines.

To make full use of IPA optimizations, you must specify -O4 on the compilation
and link steps of your application build as interprocedural analysis occurs in
stages at both compile time and link time.

Beyond -qipa, -O4 enables other optimization options:
v -qhot

Enables more aggressive HOT transformations to optimize loop constructs and
array language.

v -qarch=auto and -qtune=auto
Optimizes your application to execute on a hardware architecture identical to
your build machine. If the architecture of your build machine is incompatible
with your application's execution environment, you must specify a different
-qarch suboption after the -O4 option. This overrides -qtune=auto.

v -qcache=auto

Optimizes your cache configuration for execution on specific hardware
architecture. The auto suboption assumes that the cache configuration of your
build machine is identical to the configuration of your execution architecture.
Specifying a cache configuration can increase program performance, particularly
loop operations by blocking them to process only the amount of data that can fit
into the data cache at a time.
If you want to execute your application on a different machine, specify correct
cache values.

Potential trade-offs at level 4

In addition to the trade-offs already mentioned for -O3, specifying -qipa can
significantly increase compilation time, especially at the link step.

The IPA process
1. At compile time optimizations occur on a file-by-file basis, as well as

preparation for the link stage. IPA writes analysis information directly into the
object files the compiler produces.

2. At the link stage, IPA reads the information from the object files and analyzes
the entire application.

3. This analysis guides the optimizer on how to rewrite and restructure your
application and apply appropriate -O3 level optimizations.

The “Using interprocedural analysis” on page 41 section contains more information
on IPA including details on IPA suboptions.

Optimizing at level 5
Benefits at level 5
v Makes most aggressive optimizations available
v Makes full use of loop optimizations and interprocedural analysis

As the highest optimization level, -O5 includes all -O4 optimizations and deepens
whole program analysis by increasing the -qipa level to 2. Compiling with -O5 also
increases how aggressively the optimizer pursues aliasing improvements.

Chapter 8. Optimizing your applications 37

Additionally, if your application contains a mix of C/C++ and Fortran code that
you compile using the XL compilers, you can increase performance by compiling
and linking your code with the -O5 option.

Potential trade-offs at level 5

Compiling at -O5 requires more compilation time and machine resources than any
other optimization levels, particularly if you include -O5 on the IPA link step.
Compile at -O5 as the final phase in your optimization process after successfully
compiling and executing your application at -O4.

Tuning for your system architecture
You can instruct the compiler to generate code for optimal execution on a given
microprocessor or architecture family. By selecting appropriate target machine
options, you can optimize to suit the broadest possible selection of target
processors, a range of processors within a given family of processor architectures
or a specific processor.

The following table lists the optimization options that affect individual aspects of
the target machine. Using a predefined optimization level sets default values for
these individual options.

Table 14. Target machine options

Option Behavior

-mcpu Selects a family of processor architectures for which instruction code
should be generated. This option restricts the instruction set generated to
a subset of that for the PowerPC architecture. See “Getting the most out
of target machine options” for more information on this option.

-mtune Biases optimization toward execution on a given microprocessor, without
implying anything about the instruction set architecture to use as a
target. See “Getting the most out of target machine options” for more
information on this option.

-qcache Defines a specific cache or memory geometry. The defaults are
determined through the setting of -mtune. See “Getting the most out of
target machine options” for more information on this option.

Related information in the XL C/C++ Compiler Reference

-mcpu

-mtune

-qipa

-qcache

Getting the most out of target machine options
Using -mcpu or -qarch options

Use the -mcpu or -qarch compiler option to generate instructions that are
optimized for a specific machine architecture. For example, if you want to generate
an object code that contains instructions optimized for POWER8®, you use
-mcpu=pwr8. If your application runs on the same machine on which you are
compiling it, you can use the -qarch=auto option, which automatically detects the
specific architecture of the compiling machine and generates code to take

38 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

advantage of instructions available only on that machine (or on a system that
supports the equivalent processor architecture). Otherwise, use the -mcpu or -qarch
option to specify the smallest possible family of the machines that can run your
code reasonably well.

Using -mtune or -qtune options

Use the -mtune or -qtune compiler option to control the scheduling of instructions
that are optimized for your machine architecture. If you specify a particular
architecture with -mcpu or -qarch, -mtune or -qtune automatically selects the
suboption that generates instruction sequences with the best performance for that
architecture.

If you need to create a single binary file that runs on a range of PowerPC
hardware, you can use the -qtune=balanced option. With this option in effect,
optimization decisions made by the compiler are not targeted to a specific version
of hardware. Instead, tuning decisions try to include features that are generally
helpful across a broad range of hardware and avoid those optimizations that might
be harmful on some hardware.

Note: You must verify the performance of code compiled with the
-qtune=balanced option before distributing it.

The difference between -qtune=balanced and other -qtune suboptions including
-qtune=auto is as follows:
v With the -qtune=balanced option, the compiler generates instructions that

perform reasonably well across a range of Power® hardware.
v With other suboptions, the compiler generates instructions that are optimized for

that specified versions of hardware architecture and might not perform well on
others.

Using -qcache options

If you decide to specify your own -qcache suboptions, use -qhot along with it.
Related information in the XL C/C++ Compiler Reference

-qhot

-qcache

-mcpu

-mtune

Using high-order loop analysis and transformations
High-order transformations are optimizations that specifically improve the
performance of loops through techniques such as interchange, fusion, and
unrolling.

The goals of these loop optimizations include:
v Reducing the costs of memory access through the effective use of caches and

address translation look-aside buffers
v Overlapping computation and memory access through effective utilization of the

data prefetching capabilities provided by the hardware

Chapter 8. Optimizing your applications 39

v Improving the utilization of microprocessor resources through reordering and
balancing the usage of instructions with complementary resource requirements

v Generating SIMD vector instructions
v Generating calls to vector math library functions

To enable high-order loop analysis and transformations, use the -qhot option,
which implies an optimization level of -O2. The following table lists the suboptions
available for -qhot.

Table 15. -qhot suboptions

Suboption Behavior

level=0 Instructs the compiler to perform a subset of high-order transformations
that enhance performance by improving data locality. This suboption
implies -qhot=novector and -qhot=noarraypad. This level is automatically
enabled if you compile with -O3.

level=1 This is the default suboption if you specify -qhot with no suboptions. This
level is also automatically enabled if you compile with -O4 or -O5. This is
equivalent to specifying -qhot=vector.

vector When specified with -qnostrict and -qignerrno, or -O3 or a higher
optimization level, instructs the compiler to transform some loops to use
the optimized versions of various math functions contained in the MASS
libraries, rather than use the system versions. The optimized versions make
different trade-offs with respect to accuracy and exception-handling versus
performance. This suboption is enabled by default if you specify -qhot with
no suboptions. Also, specifying -qhot=vector with -O3 implies
-qhot=level=1.

arraypad Instructs the compiler to pad any arrays where it infers there might be a
benefit and to pad by whatever amount it chooses.

Related information in the XL C/C++ Compiler Reference

-qhot

-qstrict

-qignerrno

-mcpu

-qsimd

Getting the most out of -qhot
Here are some suggestions for using -qhot:
v Try using -qhot along with -O3 for all of your code. It is designed to have a

neutral effect when no opportunities for transformation exist. However, it
increases compilation time and might have little benefit if the program has no
loop processing vectors or arrays. In this case, using -O3 -qnohot might be
better.

v If the runtime performance of your code can significantly benefit from automatic
inlining and memory locality optimizations, try using -O4 with -qhot=level=0 or
-qhot=novector.

v If you encounter unacceptably long compilation time (this can happen with
complex loop nests), try -qhot=level=0 or -qnohot.

40 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

v If your code size is unacceptably large, try reducing the inlining level or using
-qcompact along with -qhot.

v You can compile some source files with the -qhot option and some files without
the -qhot option, allowing the compiler to improve only the parts of your code
that need optimization.

v Use -qreport along with -qsimd=auto to generate a loop transformation listing.
The listing file identifies how loops are transformed in a section marked LOOP
TRANSFORMATION SECTION. Use the listing information as feedback about how the
loops in your program are being transformed. Based on this information, you
might want to adjust your code so that the compiler can transform loops more
effectively. For example, you can use this section of the listing to identify
non-stride-one references that might prevent loop vectorization.

v Use -qreport along with -qhot or any optimization option that implies -qhot to
generate information about nested loops in the LOOP TRANSFORMATION SECTION of
the listing file. In addition, when you use -qprefetch=assistthread to generate
prefetching assist threads, a message Assist thread for data prefetching was
generated is also displayed in this section of the report.

v If you specify -qassert=refalign, you promise the compiler that all pointers
inside the compilation unit only point to data that is naturally aligned with
respect to the length of the pointer types. With this assertion, the compiler might
generate more efficient code. This assertion is particularly useful when you
target a SIMD architecture with -qhot=level=0 or -qhot=level=1 with the
-qsimd=auto option.
Related information in the XL C/C++ Compiler Reference

-qcompact

-qhot

-qsimd

-qprefetch

-qstrict

Using interprocedural analysis
Interprocedural analysis (IPA) enables the compiler to optimize across different
files (whole-program analysis), and it can result in significant performance
improvements.

You can specify interprocedural analysis on the compilation step only or on both
compilation and link steps in whole program mode. Whole program mode
expands the scope of optimization to an entire program unit, which can be an
executable or a shared object. As IPA can significantly increase compilation time,
you should limit using IPA to the final performance tuning stage of development.

You can enable IPA by specifying the -qipa option. The most commonly used
suboptions and their effects are described in the following table. The full set of
suboptions and syntax is described in the -qipa section of the XL C/C++ Compiler
Reference.

The steps to use IPA are as follows:
1. Do preliminary performance analysis and tuning before compiling with the

-qipa option, because the IPA analysis uses a two-pass mechanism that

Chapter 8. Optimizing your applications 41

increases compilation time and link time. You can reduce some compilation and
link overhead by using the -qipa=noobject option.

2. Specify the -qipa option on both the compilation and the link steps of the
entire application, or as much of it as possible. Use suboptions to indicate
assumptions to be made about parts of the program not compiled with -qipa.

Table 16. Commonly used -qipa suboptions

Suboption Behavior

level=0 Program partitioning and simple interprocedural optimization, which
consists of:
v Automatic recognition of standard libraries.
v Localization of statically bound variables and procedures.
v Partitioning and layout of procedures according to their calling

relationships. (Procedures that call each other frequently are
located closer together in memory.)

v Expansion of scope for some optimizations, notably register
allocation.

level=1 Inlining and global data mapping. Specifically:
v Procedure inlining.
v Partitioning and layout of static data according to reference

affinity. (Data that is frequently referenced together will be located
closer together in memory.)

This is the default level if you do not specify any suboptions with
the -qipa option.

level=2 Global alias analysis, specialization, interprocedural data flow:
v Whole-program alias analysis. This level includes the

disambiguation of pointer dereferences and indirect function calls,
and the refinement of information about the side effects of a
function call.

v Intensive intraprocedural optimizations. This can take the form of
value numbering, code propagation and simplification, moving
code into conditions or out of loops, and elimination of
redundancy.

v Interprocedural constant propagation, dead code elimination,
pointer analysis, code motion across functions, and interprocedural
strength reduction.

v Procedure specialization (cloning).
v Whole program data reorganization.

inline=suboptions Provides precise control over function inlining.

fine_tuning Other values for -qipa provide the ability to specify the behavior of
library code, tune program partitioning, read commands from a file,
etc.

Related information in the XL C/C++ Compiler Reference

-qipa

Getting the most from -qipa
It is not necessary to compile everything with -qipa, but try to apply it to as much
of your program as possible. Here are some suggestions:
v Specify the -qipa option on both the compile and the link steps of the entire

application. Although you can also use -qipa with libraries, shared objects, and
executable files, be sure to use -qipa to compile the main and exported
functions.

42 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

v When compiling and linking separately, use -qipa=noobject on the compile step
for faster compilation.

v When specifying optimization options in a makefile, use the compiler driver
(xlC) to link with all the compiler options on the link step included.

v As IPA can generate significantly larger object files than traditional compilations,
ensure that there is enough space in the /tmp directory (at least 200 MB). You
can use the TMPDIR environment variable to specify a directory with sufficient
free space.

v Try varying the level suboption if link time is too long. Compiling with
-qipa=level=0 can still be very beneficial for little additional link time.

v Use -qipa=list=long to generate a report of functions that were previously
inlined. If too few functions are inlined, consider using the -finline-functions
option.

v To generate data reorganization information in the listing file, specify the
optimization level -qipa=level=2 or -O5 together with -qreport. During the IPA
link pass, the data reorganization messages for program variable data will be
produced to the data reorganization section of the listing file with the label DATA
REORGANIZATION SECTION. Reorganizations include array splitting, array
transposing, memory allocation merging, array interleaving, and array
coalescing.

Note: While IPA's interprocedural optimizations can significantly improve
performance of a program, they can also cause incorrect but previously functioning
programs to fail. Here are examples of programming practices that can work by
accident without aggressive optimization but are exposed with IPA:
v Relying on the allocation order or location of automatic variables, such as taking

the address of an automatic variable and then later comparing it with the
address of another local variable to determine the growth direction of a stack.
The C language does not guarantee where an automatic variable is allocated, or
its position relative to other automatic variables. Do not compile such a function
with IPA.

v Accessing a pointer that is either invalid or beyond an array's bounds. Because
IPA can reorganize global data structures, a wayward pointer which might have
previously modified unused memory might now conflict with user-allocated
storage.

v Dereferencing a pointer that has been cast to an incompatible type.
Related information in the XL C/C++ Compiler Reference

-finline-functions

-qlist

-qipa

Using profile-directed feedback
You can use profile-directed feedback (PDF) to tune the performance of your
application for a typical usage scenario. The compiler optimizes the application
based on an analysis of how often branches are taken and blocks of code are run.

Use PDF process as one of the last steps of optimization before putting the
application into production. Optimization at all levels from -O2 up can benefit from
PDF. Other optimizations such as the -qipa option and optimization levels -O4 and
-O5 can also benefit when using with PDF process.

Chapter 8. Optimizing your applications 43

The following diagram illustrates the PDF process:

Compile with
-qpdf1

Compile with
-qpdf2

Source
code

Instrumented
executable

Profile data

Optimized
executable

Sample runs

To use the PDF process to optimize your application, follow these steps:
1. Compile some or all of the source files in a program with the -qpdf1 option.

You must specify at least the -O2 optimization level.

Notes:

v A PDF map file is generated at this step. It is used for the showpdf utility to
display part of the profiling information in text or XML format. For details,
see “Viewing profiling information with showpdf” on page 47. If you do not
need to view the profiling information, specify the -qnoshowpdf option at this
step so that the PDF map file is not generated. For details of -qnoshowpdf,
see -qshowpdf in the XL C/C++ Compiler Reference.

v Although you can specify PDF optimization (-qpdf) as early in the
optimization level as -O2, PDF optimization is recommended at -O4 and
higher.

v You do not have to compile all of the files of the programs with the -qpdf1
option. In a large application, you can concentrate on those areas of the code
that can benefit most from the optimization.

v When option -O4, -O5, or any level of option -qipa is in effect, and you
specify the -qpdf1 option at the link step but not at the compile step, the
compiler issues a warning message. The message indicates that you must
recompile your program to get all the profiling information.

Restriction: When you run an application that is compiled with -qpdf1, you
must end the application using normal methods, including reaching the end of
the execution for the main function and calling the exit() function in libc
(stdlib.h) for C/C++ programs. System calls exit(), _Exit(), and abort() are
considered abnormal termination methods and are not supported. Using
abnormal program termination might result in incomplete instrumentation data
generated by using the PDF file or PDF data not being generated at all.

2. Run the resulting application with a typical data set. When the application
exits, profile information is written to one or more PDF files. You can train the
resulting application multiple times with different data sets. The profiling
information is accumulated to provide a count of how often branches are taken
and blocks of code are run, based on the input data used. This step is called the
PDF training step.By default, the PDF file is named ._pdf, and it is placed in

Figure 2. Profile-directed feedback

44 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

the current working directory or the directory specified by the PDFDIR
environment variable. If the PDFDIR environment variable is set but the
specified directory does not exist, the compiler issues a warning message. To
override the defaults, use the -qpdf1=pdfname or -qpdf1=exename option.
If you recompile your program by using either of the -qpdf1=level=0 or
-qpdf1=level=1 option, single-pass profiling is supported. The compiler
removes the existing PDF file before generating a new application.
If you recompile your program by using -qpdf1=level=2 option, multiple-pass
profiling is supported. You can repeat compiling your program and training the
resulting application, then new PDF files are generated up to five times.

Notes:

v When you compile your program with the -qpdf1 or -qpdf2 option, by
default, the -qipa option is also invoked with level=0.

v To avoid wasting compile and run time, make sure that the PDFDIR
environment variable is set to an absolute path. Otherwise, you might run
the application from a wrong directory, and the compiler cannot locate the
profiling information files. When it happens, the program might not be
optimized correctly or might be stopped by a segmentation fault. A
segmentation fault might also happen if you change the value of the PDFDIR
environment variable and run the application before the PDF process
finishes.

v Avoid using atypical data that can distort the analysis to infrequently
executed code paths.

3. If you have several PDF files, use the mergepdf utility to combine these PDF
files into one PDF file. For example, if you produce three PDF files that
represent usage patterns that occur 53%, 32%, and 15% of the time respectively,
you can use this command:

mergepdf -r 53 path1 -r 32 path2 -r 15 path3

Notes:

v Avoid mixing the PDF files created by different versions or PTF levels of the
XL C/C++ compiler.

v You cannot edit PDF files that are generated by the resulting application.
Otherwise, the performance or function of the generated executable
application might be affected.

4. Recompile your program using the same compiler options as before, but
change -qpdf1 to -qpdf2. In this second compilation, the accumulated profiling
information is used to fine-tune the optimizations. The resulting program
contains no profiling overhead and runs at full speed.

Notes:

v If the compiler cannot read any PDF files in this step, the compiler issues
error message 1586-401 but continues the compilation.

v You are highly recommended to use the same optimization level at all
compilation steps for a particular program. Otherwise, the PDF process
cannot optimize your program correctly and might even slow it down. All
compiler settings that affect optimization must be the same, including any
supplied by configuration files.

v You can modify your source code and use the -qpdf1 and -qpdf2 options to
compile your program. Old profiling information can still be preserved and
used during the second stage of the PDF process. The compiler issues a list

Chapter 8. Optimizing your applications 45

of warnings but the compilation does not stop. An information message is
also issued with a number in the range of 0 - 100 to indicate how outdated
the old profiling information is.

v When option -O4, -O5, or any level of option -qipa is in effect, and you
specify the -qpdf2 option at the link step but not at the compile step, the
compiler issues a warning message. The message indicates that you must
recompile your program to get all the profiling information.

v When using the -qreport option with the -qpdf2 option, you can get
additional information in your listing file to help you tune your program.
This information is written to the PDF Report section.

5. If you want to erase the PDF information, use the cleanpdf or resetpdf utility.

Instead of step 4, you can use the -qpdf2 option to link the object files that are
created during the -qpdf1 phase without recompiling your program during the
-qpdf2 phase. This alternative approach can save considerable time and help tune
large applications for optimization.

Examples

The following example demonstrates that you can concentrate on compiling those
codes that can benefit most from the optimization, instead of compiling all the
code of applications with the -qpdf1 option:
#Set the PDFDIR variable
export PDFDIR=$HOME/project_dir

#Compile most of the files with -qpdf1
xlc -qpdf1 -O3 -c file1.c file2.c file3.c

#This file does not need optimization
xlc -c file4.c

#Non-PDF object files such as file4.o can be linked
xlc -qpdf1 -O3 file1.o file2.o file3.o file4.o

#Run several times with different input data
./a.out < polar_orbit.data
./a.out < elliptical_orbit.data
./a.out < geosynchronous_orbit.data

#No need to recompile the source of non-PDF object files
#(file4.c).
xlc -qpdf2 -O3 -c file1.c file2.c file3.c

#Link all the object files into the final application
xlc -qpdf2 -O3 file1.o file2.o file3.o file4.o

The following example bypasses recompiling the source with the -qpdf2 option:
#Compile source with -qpdf1
xlc -c -qpdf1 -O3 file1.c file2.c

#Link object files
xlc -qpdf1 -O3 file1.o file2.o

#Run with one set of input data
./a.out < sample.data

#Link object files
xlc -qpdf2 -O3 file1.o file2.o

Related information in the XL C/C++ Compiler Reference

46 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

-qpdf1, -qpdf2

-O, -qoptimize

Runtime environment variables

Viewing profiling information with showpdf
With the showpdf utility, you can view the following types of profiling
information that is gathered from your application:
v Block-counter profiling
v Call-counter profiling
v Value profiling
v Cache-miss profiling, if you specified the -qpdf1=level=2 option during the

-qpdf1 phase.

You can view the first two types of profiling information in either text or XML
format. However, you can view value profiling and cache-miss profiling
information only in XML format.

Syntax

►► showpdf
pdfdir -f pdfname -m pdfmapdir -xml

►◄

Parameters

pdfdir
Is the directory that contains the profile-directed feedback (PDF) file. If the
PDFDIR environment variable is not changed after the -qpdf1 phase, the PDF
map file is also contained in this directory. If this parameter is not specified,
the compiler uses the value of the PDFDIR environment variable as the name
of the directory.

pdfname
Is the name of the PDF file. If this parameter is not specified, the compiler uses
._pdf as the name of the PDF file.

pdfmapdir
Is the directory that contains the PDF map file. If this parameter is not
specified, the compiler uses the value of the PDFDIR environment variable as
the name of the directory.

-xml
Determines the display format of the PDF information. If this parameter is
specified, the PDF information is displayed in XML format; otherwise it is
displayed in text format. Because value profiling and cache-miss profiling
information can be displayed only in XML format, the PDF report in XML
format contains more information than the report in text format.

Usage

A PDF map file that contains static information is generated during the -qpdf1
phase, and a PDF file is generated during the execution of the resulting
application. The showpdf utility needs both the PDF and PDF map files to display
PDF information in either text or XML format.

Chapter 8. Optimizing your applications 47

If the -qpdf1=level=2 option is specified during the -qpdf1 phase, several PDF and
PDF map files might be generated. Then if you want to view the profiling
information, you need to run the showpdf utility for each pair of PDF and PDF
map files.

By default, the PDF file is named ._pdf, and the PDF map file is named ._pdf_map.
If the PDFDIR environment variable is set, the compiler places the PDF and PDF
map files in the directory specified by PDFDIR. Otherwise, if the PDFDIR
environment variable is not set, the compiler places these files in the current
working directory. If the PDFDIR environment variable is set but the specified
directory does not exist, the compiler issues a warning message. To override the
defaults, use the -qpdf1=pdfname option to specify the paths and names for the
PDF and PDF map files. For example, if you specify the -qpdf1=pdfname=/home/
joe/func option, the resulting PDF file is named func, and the PDF map file is
named func_map. Both of the files are placed in the /home/joe directory.

If the PDFDIR environment variable is changed between the -qpdf1 phase and the
execution of the resulting application, the PDF and PDF map files are generated in
separate directories. In this case, you must specify the directories for both of these
files to the showpdf utility.

Notes:

v PDF and PDF map files must be generated from the same compilation instance.
Otherwise, the compiler issues an error.

v PDF and PDF map files must be generated during the same profiling process. It
means that you cannot mix and match PDF and PDF map files that are
generated from different profiling processes.

v You must use the same version and PTF level of the compiler to generate the
PDF file and the PDF map file.

v The showpdf utility accepts only PDF files that are in binary format.
v You can use the PDF_WL_ID environment variable to distinguish the multiple

sets of PDF counters that are generated by multiple training runs of the user
program.

The following example shows how to use the showpdf utility to view the profiling
information for a Hello World application:

The source for the program file hello.c is as follows:
#include <stdio.h>
void HelloWorld()
{

printf("Hello World");
}
main()
{

HelloWorld();
return 0;

}

1. Compile the source file.
xlc -qpdf1 -O hello.c

2. Run the resulting executable program a.out using a typical data set or several
typical data sets.

3. If you want to view the profiling information for the executable file in text
format, run the showpdf utility without any parameters.
showpdf

48 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

The result is as follows:
HelloWorld(67): 1 (hello.c)

Call Counters:
4 | 1 printf(69)

Call coverage = 100% (1/1)

Block Counters:
2-4 | 1
5 |
5 | 1

Block coverage = 100% (2/2)

main(68): 1 (hello.c)

Call Counters:
8 | 1 HelloWorld(67)

Call coverage = 100% (1/1)

Block Counters:
6-9 | 1
10 |

Block coverage = 100% (1/1)

Total Call coverage = 100% (2/2)
Total Block coverage = 100% (3/3)

If you want to view the profiling information in XML format, run the showpdf
utility with the -xml parameter.
showpdf -xml

The result is as follows:
<?xml version="1.0" encoding="UTF-8" ?>

- <XLTransformationReport xmlns="http://www.ibm.com/2010/04/CompilerTransformation" version="1.0">
- <CompilationStep name="showpdf">
- <ProgramHierarchy>
- <FileList>
- <File id="1" name="hello.c">
- <RegionList>

<Region id="67" name="HelloWorld" startLineNumber="2" />
<Region id="68" name="main" startLineNumber="6" />

</RegionList>
</File>

</FileList>
</ProgramHierarchy>
<TransformationHierarchy />

- <ProfilingReports>
- <BlockCounterList>
- <BlockCounter regionId="67" execCount="1" coveredBlock="2" totalBlock="2">
- <BlockList>

<Block index="3" execCount="1" startLineNumber="2" endLineNumber="4" />
<Block index="2" execCount="0" startLineNumber="5" endLineNumber="5" />
<Block index="4" execCount="1" startLineNumber="5" endLineNumber="5" />

</BlockList>
</BlockCounter>

- <BlockCounter regionId="68" execCount="1" coveredBlock="1" totalBlock="1">
- <BlockList>

<Block index="3" execCount="1" startLineNumber="6" endLineNumber="9" />
<Block index="2" execCount="0" startLineNumber="10" endLineNumber="10" />

</BlockList>
</BlockCounter>

</BlockCounterList>
- <CallCounterList>
- <CallCounter regionId="67" execCount="1" coveredCall="0" totalCall="0">
- <CallList>

<Call name="printf" execCount="1" lineNumber="4" />
</CallList>

</CallCounter>

Chapter 8. Optimizing your applications 49

- <CallCounter regionId="68" execCount="1" coveredCall="0" totalCall="0">
- <CallList>

<Call name="HelloWorld" execCount="1" lineNumber="8" />
</CallList>

</CallCounter>
</CallCounterList>
<ValueProfileList />
<CacheMissList />

</ProfilingReports>
</CompilationStep>

</XLTransformationReport>

Related information in the XL C/C++ Compiler Reference

-qpdf1, -qpdf2

-qshowpdf

Object level profile-directed feedback
About this task

In addition to optimizing entire executables, profile-directed feedback (PDF) can
also be applied to specific object files. This can be an advantage in applications
where patches or updates are distributed as object files or libraries rather than as
executables. Also, specific areas of functionality in your application can be
optimized without you needing to go through the process of relinking the entire
application. In large applications, you can save the time and trouble that otherwise
need to be spent relinking the application.

The process for using object level PDF is essentially the same as the standard PDF
process but with a small change to the -qpdf2 step. For object level PDF, compile
your program using the -qpdf1 option, execute the resulting application with
representative data, compile the program again with the -qpdf2 option, but now
also use the -qnoipa option so that the linking step is skipped.

The steps below outline this process:
1. Compile your program using the -qpdf1 option. For example:

xlc -c -O3 -qpdf1 file1.c file2.c file3.c

In this example, we are using the optimization level -O3 to indicate that we
want a moderate level of optimization.

2. Link the object files to get an instrumented executable:
xlc -O3 -qpdf1 file1.o file2.o file3.o

3. Run the instrumented executable with sample data that is representative of the
data you want to optimize for.
a.out < sample_data

4. Compile the program again using the -qpdf2 option. Specify the -qnoipa option
so that the linking step is skipped and PDF optimization is applied to the
object files rather than to the entire executable.
xlc -c -O3 -qpdf2 -qnoipa file1.c file2.c file3.c

The resulting output of this step are object files optimized for the sample data
processed by the original instrumented executable. In this example, the
optimized object files would be file1.o, file2.o, and file3.o. These can be linked
using the system loader ld or by omitting the -c option in the -qpdf2 step.

Notes:

50 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

v You must use the same optimization level in all the steps. In this example, the
optimization level is -O3.

v If you want to specify a file name for the profile that is created, use the pdfname
suboption in both the -qpdf1 and -qpdf2 steps. For example:
xlc -O3 -qpdf1=pdfname=myprofile file1.c file2.c file3.c

Without the pdfname suboption, by default the file name is ._pdf; the location of
the file is the current working directory or whatever directory you have set
using the PDFDIR environment variable. If the PDFDIR environment variable is
set but the specified directory does not exist, the compiler issues a warning
message.

v Because the -qnoipa option needs to be specified in the -qpdf2 step so that
linking of your object files is skipped, you cannot use interprocedural analysis
(IPA) optimizations and object level PDF at the same time.

For details, see the -qpdf1, -qpdf2 section in the XL C/C++ Compiler Reference.

Marking variables as local or imported
The compiler assumes that all variables in applications are imported, but the use of
-qdatalocal and -qdataimported can mark variables local or imported. The
compiler optimizes applications that are based on the specification of static or
dynamic binding for program variables.

-qdatalocal

Local variables are stored in a special segment of memory that is uniquely bound
to a program or shared library. Specify the -qdatalocal option to identify variables
to be treated as local to a compiled program or shared library. You can specify the
option with no parameters to indicate that all appropriate variables are local.
Alternatively, you can append a list of colon-separated names to the option to treat
only a subset of the program arguments as local.

When it can be, a variable that is marked as local is embedded directly into a
structure that is called the table of contents (TOC) instead of in a separate global
piece of memory. The prerequisite is that the variable's storage must be no more
than the pointer size for it to be embedded in the TOC. Usually, pointers to data
are stored in the TOC. The -qdatalocal option allows storage of data directly in
the TOC, hence reducing data accesses from two load instructions to one load
instruction.

-qdataimported

Imported variables are stored according to the default memory allocation scheme.
The -qdataimported option is the default data binding mechanism. Specifying the
option implies that the data is visible to other program or shared library that is
linked. As a result, specifying variable names as arguments to the -qdataimported
option or compiling with the -qdataimported option without arguments in
isolation has no effect.

The -qdataimported option is useful when you use it in combination with
-qdatalocal. Because it is unlikely that you want to store all data in the TOC, the
-qdataimported option can override -qdatalocal for variables external to a
program or shared library. For example, the use of options -qdatalocal
-qdataimported=<variable> stores all global data in the TOC except for <variable>.

Chapter 8. Optimizing your applications 51

Related information in the XL C/C++ Compiler Reference

-qdataimported, -qdatalocal, -qtocdata

Getting the most out of -qdatalocal
You can see some examples that illustrate the use of the -qdatalocal option.

In the source for the following program file, A1 and A2 are global variables:
int A1;
int A2;
int main(){

A2=A1+1;
return A2;

}

Here is an excerpt of the listing file that is created if you specify -qlist without
-qdatalocal:

| 000000 PDEF main
4| PROC
5| 000000 lwz 80620004 1 L4A gr3=.A1(gr2,0)
5| 000004 lwz 80630000 1 L4A gr3=A1(gr3,0)
5| 000008 addi 38630001 1 AI gr3=gr3,1
5| 00000C lwz 80820008 1 L4A gr4=.A2(gr2,0)
5| 000010 stw 90640000 1 ST4A A2(gr4,0)=gr3

Here is an excerpt of the listing file that is created if you specify -qlist with
-qdatalocal:

| 000000 PDEF main
4| PROC
5| 000000 lwz 80620004 1 L4A gr3=A1(gr2,0)
5| 000004 addi 38630001 1 AI gr3=gr3,1
5| 000008 stw 90620008 1 ST4A A2(gr2,0)=gr3

When you specify -qdatalocal, the data is accessed by a single load instruction
because the A1 and A2 variables are embedded in the TOC. When you do not
specify -qdatalocal, A1 and A2 variables are accessed by two load instructions. In
this example, you can use -qdatalocal=A1:A2 to specify local variables
individually.

You can always see the >>>>> OPTIONS SECTION <<<<< of the .lst file that is
created by -qlist to confirm the use of these options. For example, you can view
DATALOCAL=<variables> or DATALOCAL when the option is specified.

Notes:

v On 64-bit Linux, TOC entries are pointer size. When you specify -qdatalocal
without arguments, the option is ignored for variables that are larger than the
pointer size. Conversely, data smaller than pointer size is word-aligned. See the
following example of an objdump excerpt that shows when a char (r3) is
marked local. The offset between the byte and the next data (r4) is still 4 bytes.
The data is accessed by a load byte instruction instead of a regular load.
10000380: 88 62 00 20 lbz r3,32(r2)
10000384: 80 82 00 24 l r4,36(r2)
r2 (base address of the TOC), r3 (char), r4 (int)

v If you specify an unsuitable variable as a parameter to -qdatalocal, -qdatalocal
is ignored. Unsuitable variables can be data that exceeds pointer-size bytes or
variables that do not exist. When you specify -qdatalocal for a variable that is

52 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

not a TOC candidate, the storage for that variable defaults to -qdataimported
and the variable is not stored in the TOC.

v C++ You must use the mangled names when you specify local variables.
Otherwise, you might encounter an error message. C++

v Mark variables as local with care. If you specify -qdatalocal without any
arguments, expect all global variables to be candidates for TOC direct placement,
even those variables that are marked as external. Variables with static linkage do
not have the same issues.

v Since each TOC structure is unique to a module or shared library, the utility of
the -qdatalocal option is limited to data within that module or shared library.

v For programs with multiple modules, switching between multiple TOC
structures might dilute the speedup that is associated with this option.
Related information in the XL C/C++ Compiler Reference

-qdataimported, -qdatalocal, -qtocdata

Other optimization options
Options are available to control particular aspects of optimization. They are often
enabled as a group or given default values when you enable a more general
optimization option or level.

For more information on these options, see the heading for each option in the XL
C/C++ Compiler Reference.

Table 17. Selected compiler options for optimizing performance

Option Description

-qignerrno Allows the compiler to assume that errno is not modified by
library function calls, so that such calls can be optimized. Also
allows optimization of square root operations, by generating
inline code rather than calling a library function.

-qsmallstack Instructs the compiler to compact stack storage. Doing so
might increase heap usage, which might increase execution
time. However, it might be necessary for the program to run
or to be optimally multithreaded.

-finline-functions Controls inlining.

-funroll-loops,
-funroll-all-loops

Independently controls loop unrolling. -funroll-all-loops is
implicitly activated under -O3.

C++

-qnoeh Informs the compiler that no C++ exceptions will be thrown

and that cleanup code can be omitted. If your program does
not throw any C++ exceptions, use this option to compact
your program by removing exception-handling code.

-qnounwind Informs the compiler that the stack will not be unwound
while any routine in this compilation is active. This option can
improve optimization of nonvolatile register saves and
restores. In C++, the -qnounwind option implies the -qnoeh
option. It should not be used if the program uses
setjmp/longjmp or any other form of exception handling.

-qstrict Disables all transformations that change program semantics.
In general, compiling a correct program with -qstrict and
any levels of optimization produces the same results as
without optimization.

Chapter 8. Optimizing your applications 53

Table 17. Selected compiler options for optimizing performance (continued)

Option Description

-qnostrict Allows the compiler to reorder floating-point calculations and
potentially excepting instructions. A potentially excepting
instruction is one that might raise an interrupt due to
erroneous execution (for example, floating-point overflow, a
memory access violation). -qnostrict is used by default for
the -O3 and higher optimization levels.

-qprefetch Inserts prefetch instructions in compiled code to improve code
performance. In situations where you are working with
applications that generate a high cache-miss rate, you can use
its suboption assistthread to generate prefetching assist
threads (for example, -qprefetch=assistthread). -qnoprefetch
is the default option.

Related information in the XL C/C++ Compiler Reference

-qignerrno

-qsmallstack

-finline-functions

-funroll-loops, -funroll-all-loops\

-qinlglue

-qeh (C++ only)

-qunwind

-qstrict

-qprefetch

54 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Chapter 9. Debugging optimized code

Debugging optimized programs presents special usability problems. Optimization
can change the sequence of operations, add or remove code, change variable data
locations, and perform other transformations that make it difficult to associate the
generated code with the original source statements.

For example:

Data location issues
With an optimized program, it is not always certain where the most
current value for a variable is located. For example, a value in memory
might not be current if the most current value is being stored in a register.
Most debuggers are incapable of following the removal of stores to a
variable, and to the debugger it appears as though that variable is never
updated, or possibly even never set. This contrasts with no optimization
where all values are flushed back to memory and debugging can be more
effective and usable.

Instruction scheduling issues
With an optimized program, the compiler might reorder instructions. That
is, instructions might not be executed in the order you would expect based
on the sequence of lines in the original source code. Also, the sequence of
instructions for a statement might not be contiguous. As you step through
the program with a debugger, the program might appear as if it is
returning to a previously executed line in the code (interleaving of
instructions).

Consolidating variable values
Optimizations can result in the removal and consolidation of variables. For
example, if a program has two expressions that assign the same value to
two different variables, the compiler might substitute a single variable.
This can inhibit debug usability because a variable that a programmer is
expecting to see is no longer available in the optimized program.

There are a couple of different approaches you can take to improve debug
capabilities while also optimizing your program:

Debug non-optimized code first
Debug a non-optimized version of your program first, then recompile it
with your desired optimization options. See “Debugging in the presence of
optimization” on page 56 for some compiler options that are useful in this
approach.

Use -g level
Use the -g level suboption to control the amount of debugging information
made available. Increasing it improves debug capability but prevents some
optimizations.

Understanding different results in optimized programs
Here are some reasons why an optimized program might produce different results
from one that has not undergone the optimization process:

© Copyright IBM Corp. 1996, 2014 55

v Optimized code can fail if a program contains code that is not valid. The
optimization process relies on your application conforming to language
standards.

v If a program that works without optimization fails when you optimize, check
the cross-reference listing and the execution flow of the program for variables
that are used before they are initialized. Compile with the -qinitauto=hex_value
option to try to produce the incorrect results consistently. For example, using
-qinitauto=FF gives variables an initial value of "negative not a number"
(-NAN). Any operations on these variables will also result in NAN values. Other
bit patterns (hex_value) might yield different results and provide further clues as
to what is going on. Programs with uninitialized variables can appear to work
properly when compiled without optimization because of the default
assumptions the compiler makes, but such programs might fail when you
optimize. Similarly, a program can appear to execute correctly after optimization,
but it fails at lower optimization levels or when it is run in a different
environment. You can also use the -qcheck=unset option to detect variables that
are not or might not be initialized.

v Referring to an automatic-storage variable by its address after the owning
function has gone out of scope leads to a reference to a memory location that
can be overwritten as other auto variables come into scope as new functions are
called.

Use with caution debugging techniques that rely on examining values in storage,
unless the -g8 or -g9 option is in effect and the optimization level is -O2. The
compiler might have deleted or moved a common expression evaluation. It might
have assigned some variables to registers so that they do not appear in storage at
all.

Debugging in the presence of optimization
Debug and compile your program with your desired optimization options. Test the
optimized program before placing it into production. If the optimized code does
not produce the expected results, you can attempt to isolate the specific
optimization problems in a debugging session.

The following list presents options that provide specialized information, which can
be helpful during the debugging of optimized code:

-qlist Instructs the compiler to emit an object listing. The object listing includes
hex and pseudo-assembly representations of the generated instructions,
traceback tables, and text constants.

-qreport
Instructs the compiler to produce a report of the loop transformations it
performed, what inlining was done, and some other transformations. To
generate a listing file, you must specify the -qreport option with at least
one optimization option such as -qhot, , -finline-functions, or -qsimd.

-qipa=list
Instructs the compiler to emit an object listing that provides information
for IPA optimization.

-qcheck
Generates code that performs certain types of runtime checking.

-qkeepparm
Ensures that procedure parameters are stored on the stack even during
optimization. This can negatively impact execution performance. The

56 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

-qkeepparm option then provides access to the values of incoming
parameters to tools, such as debuggers, simply by preserving those values
on the stack.

-qinitauto
Instructs the compiler to emit code that initializes all automatic variables to
a given value.

-g Generates debugging information to be used by a symbolic debugger. You
can use different -g levels to debug optimized code by viewing or possibly
modifying accessible variables at selected source locations in the debugger.
Higher -g levels provide a more complete debug support, while lower
levels provide higher runtime performance. For details, see -g.

Chapter 9. Debugging optimized code 57

58 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Chapter 10. Coding your application to improve performance

Chapter 8, “Optimizing your applications,” on page 31 discusses the various
compiler options that the XL C/C++ compiler provides for optimizing your code
with minimal coding effort. If you want to take your application a step further to
complement and take the most advantage of compiler optimizations, the following
sections discuss C and C++ programming techniques that can improve
performance of your code:
v “Finding faster input/output techniques”
v “Reducing function-call overhead”
v “Using template explicit instantiation declarations (C++11)” on page 61
v “Managing memory efficiently (C++ only)” on page 61
v “Optimizing variables” on page 62
v “Manipulating strings efficiently” on page 62
v “Optimizing expressions and program logic” on page 63
v “Optimizing operations in 64-bit mode” on page 64
v “Using rvalue references (C++11)” on page 64
v “Using visibility attributes (IBM extension)” on page 67

Finding faster input/output techniques
There are a number of ways to improve your program's performance of input and
output:
v If your file I/O accesses do not exhibit locality (that is truly random access such

as in a database), implement your own buffering or caching mechanism on the
low-level I/O functions.

v If you do your own I/O buffering, make the buffer a multiple of 4KB, which is
the minimum size of a page.

v Use buffered I/O to handle text files.
v If you have to process an entire file, determine the size of the data to be read in,

allocate a single buffer to read it to, read the whole file into that buffer at once
using read, and then process the data in the buffer. This reduces disk I/O,
provided the file is not so big that excessive swapping will occur. Consider
using the mmap function to access the file.

Reducing function-call overhead
When you write a function or call a library function, consider the following
guidelines:
v Call a function directly, rather than using function pointers.
v Use const arguments in inlined functions whenever possible. Functions with

constant arguments provide more opportunities for optimization.
v Use the restrict keyword for pointers that can never point to the same

memory.
v Use #pragma disjoint within functions for pointers or reference parameters that

can never point to the same memory.
v Declare a nonmember function as static whenever possible. This can speed up

calls to the function and increase the likelihood that the function will be inlined.

© Copyright IBM Corp. 1996, 2014 59

v C++ Usually, you should not declare all your virtual functions inline. If all
virtual functions in a class are inline, the virtual function table and all the virtual
function bodies will be replicated in each compilation unit that uses the class.

v C++ When declaring functions, use the const specifier whenever possible.

v C Fully prototype all functions. A full prototype gives the compiler and
optimizer complete information about the types of the parameters. As a result,
promotions from unwidened types to widened types are not required, and
parameters can be passed in appropriate registers.

v C Avoid using unprototyped variable argument functions.
v Design functions so that they have few parameters and the most frequently used

parameters are in the leftmost positions in the function prototype.
v Avoid passing by value large structures or unions as function parameters or

returning a large structure or a union. Passing such aggregates requires the
compiler to copy and store many values. This is worse in C++ programs in
which class objects are passed by value because a constructor and destructor are
called when the function is called. Instead, pass or return a pointer to the
structure or union, or pass it by reference. Homogeneous structs, unions and
arrays that meet one of the following conditions can be efficiently passed as
value parameters or returned as function results:
– Contain only up to eight floating-point values of the same type where

complex is counted as two.
– Contain up to eight vector values or values processed in vector registers.

v Pass non-aggregate types such as int and short or small aggregates by value
rather than passing by reference, whenever possible.

v If your function exits by returning the value of another function with the same
parameters that were passed to your function, put the parameters in the same
order in the function prototypes. The compiler can then branch directly to the
other function.

v Use the built-in functions, which include string manipulation, floating-point, and
trigonometric functions, instead of coding your own. Intrinsic functions require
less overhead and are faster than a function call, and they often allow the
compiler to perform better optimization.

C++ Many functions from the C++ standard libraries are mapped to
optimized built-in functions by the compiler.

C Many functions from string.h and math.h are mapped to optimized
built-in functions by the compiler.

v Selectively mark your functions for inlining using the inline keyword. An
inlined function requires less overhead and is generally faster than a function
call. The best candidates for inlining are small functions that are called
frequently from a few places, or functions called with one or more compile-time
constant parameters, especially those that affect if, switch or for statements.
You might also want to put these functions into header files, which allows
automatic inlining across file boundaries even at low optimization levels. Be sure
to inline all functions that only load or store a value, or use simple operators
such as comparison or arithmetic operators. Large functions and functions that
are called rarely are generally not good candidates for inlining. Neither are
medium size functions that are called from many places.

v Avoid breaking your program into too many small functions. If you must use
small functions, you can use the -qipa compiler option to automatically inline
such functions and use other techniques to optimize calls between functions.

60 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

v C++ Avoid virtual functions and virtual inheritance unless required for class
extensibility. These language features are costly in object space and function
invocation performance.
Related information in the XL C/C++ Compiler Reference

-qisolated_call

#pragma disjoint

-qipa

Using template explicit instantiation declarations (C++11)

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation might change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

Use the explicit instantiation declarations feature to suppress the implicit
instantiation of a template specialization or its members. This helps reduce the
collective size of the object files and shorten compilation time.

Managing memory efficiently (C++ only)
Because C++ objects are often allocated from the heap and have limited scope,
memory use affects performance more in C++ programs than it does in C
programs. For that reason, consider the following guidelines when you develop
C++ applications:
v In a structure, declare the largest aligned members first. Members of similar

alignment should be grouped together where possible.
v In a structure, place variables near each other if they are frequently used

together.
v Ensure that objects that are no longer needed are freed or otherwise made

available for reuse. One way to do this is to use an object manager. Each time you
create an instance of an object, pass the pointer to that object to the object
manager. The object manager maintains a list of these pointers. To access an
object, you can call an object manager member function to return the
information to you. The object manager can then manage memory usage and
object reuse.

v Storage pools are a good way of keeping track of used memory (and reclaiming
it) without having to resort to an object manager or reference counting. Do not
use storage pools for objects with non-trivial destructors, because in most
implementations the destructors cannot be run when the storage pool is cleared.

v Avoid copying large and complicated objects.
v Avoid performing a deep copy if a shallow copy is all that you require. For an

object that contains pointers to other objects, a shallow copy copies only the
pointers and not the objects to which they point. The result is two objects that
point to the same contained object. A deep copy, however, copies the pointers
and the objects they point to, as well as any pointers or objects that are

Chapter 10. Coding your application to improve performance 61

contained within that object, and so on. A deep copy must be performed in
multithreaded environments, because it reduces sharing and synchronization.

v Use virtual methods only when absolutely necessary.
v Use the "Resource Acquisition is Initialization" (RAII) pattern.
v Use shared_ptr and weak_ptr.

Optimizing variables
Consider the following guidelines:
v Use local variables, preferably automatic variables, as much as possible. The

compiler must make several worst-case assumptions about global variables. For
example, if a function uses external variables and also calls external functions,
the compiler assumes that every call to an external function could use and
change the value of every external variable. If you know that a global variable is
not read or affected by any function call and this variable is read several times
with function calls interspersed, copy the global variable to a local variable and
then use this local variable.

v If you must use global variables, use static variables with file scope rather than
external variables whenever possible. In a file with several related functions and
static variables, the optimizer can gather and use more information about how
the variables are affected.

v If you must use external variables, group external data into structures or arrays
whenever it makes sense to do so. All elements of an external structure use the
same base address. Do not group variables whose addresses are taken with
variables whose addresses are not taken.

v Avoid taking the address of a variable. If you use a local variable as a temporary
variable and must take its address, avoid reusing the temporary variable for a
different purpose. Taking the address of a local variable can inhibit
optimizations that would otherwise be done on calculations involving that
variable.

v Use constants instead of variables where possible. The optimizer is able to do a
better job reducing runtime calculations by doing them at compile time instead.
For instance, if a loop body has a constant number of iterations, use constants in
the loop condition to improve optimization (for (i=0; i<4; i++) can be better
optimized than for (i=0; i<x; i++)). An enumeration declaration can be used
to declare a named constant for maintainability.

v Use register-sized integers (long data type) for scalars to avoid sign extension
instructions after each change. For large arrays of integers, consider using
one-byte or two-byte integers or bit fields.

v Use the smallest floating-point precision appropriate to your computation.
v An extern variables that must be shared within a shared library but need not be

accessed from outside the library must be declared with a visibility attribute or
an option that limits its visibility to the library. This allows it to be accessed
directly instead of via the TOC.
Related information in the XL C/C++ Compiler Reference

-qisolated_call

Manipulating strings efficiently
The handling of string operations can affect the performance of your program.
v When you store strings into allocated storage, align the start of the string on an

8-byte or 16-byte boundary.

62 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

v Keep track of the length of your strings. If you know the length of a string, you
can use mem functions instead of str functions. For example, memcpy is faster than
strcpy because it does not have to search for the end of the string.

v If you are certain that the source and target do not overlap, use memcpy instead
of memmove. This is because memcpy copies directly from the source to the
destination, while memmove might copy the source to a temporary location in
memory before copying to the destination or copy it in reverse order depending
on the length of the string.

v When manipulating strings using mem functions, faster code can be generated if
the count parameter is a constant rather than a variable. This is especially true
for small count values.

v Make string literals read-only, whenever possible. When the same string is used
multiple times, making it read-only improves certain optimization techniques,
reduces memory usage, and shortens compilation time. You can explicitly set
strings to read-only by using -qro (this is enabled by default C except
when compiling with cc C) to avoid changing your source files.
Related information in the XL C/C++ Compiler Reference

-qro

Optimizing expressions and program logic
Consider the following guidelines:
v If components of an expression are used in other expressions and they include

function calls or there are function calls between the uses, assign the duplicated
values to a local variable.

v Avoid forcing the compiler to convert numbers between integer and
floating-point internal representations. For example:
float array[10];
float x = 1.0;
int i;
for (i = 0; i< 9; i++) { /* No conversions needed */

array[i] = array[i]*x;
x = x + 1.0;
}

for (i = 0; i< 9; i++) { /* Multiple conversions needed */
array[i] = array[i]*i;
}

When you must use mixed-mode arithmetic, code the integer and floating-point
arithmetic in separate computations whenever possible.

v Do not use global variables as loop indices or bounds.
v Avoid goto statements that jump into the middle of loops. Such statements

inhibit certain optimizations.
v Improve the predictability of your code by making the fall-through path more

probable. Code such as:
if (error) {handle error} else {real code}

should be written as:
if (!error) {real code} else {error}

v If one or two cases of a switch statement are typically executed much more
frequently than other cases, break out those cases by handling them separately
before the switch statement. If possible, replace the switch statement by
checking whether the value is in range to be obtained from an array.

Chapter 10. Coding your application to improve performance 63

v C++ Use try blocks for exception handling only when necessary because
they can inhibit optimization.

v Keep array index expressions as simple as possible.

Optimizing operations in 64-bit mode
The ability to handle larger amounts of data directly in physical memory rather
than relying on disk I/O is perhaps the most significant performance benefit of
64-bit machines. However, some applications compiled in 32-bit mode perform
better than when they are recompiled in 64-bit mode. Some reasons for this
include:
v 64-bit programs are larger. The increase in program size places greater demands

on physical memory.
v 64-bit long division is more time-consuming than 32-bit integer division.
v 64-bit programs that use 32-bit signed integers as array indexes or loop counts

might require additional instructions to perform sign extension each time the
array is referenced or the loop count is incremented.

Some ways to compensate for the performance liabilities of 64-bit programs
include:
v Avoid performing mixed 32-bit and 64-bit operations. For example, adding a

32-bit data type to a 64-bit data type requires that the 32-bit be sign-extended to
clear or set the upper 32-bit of the register. This slows the computation.

v Use long types instead of signed, unsigned, and plain int types for variables
which will be frequently accessed, such as loop counters and array indexes.
Doing so frees the compiler from having to truncate or sign-extend array
references, parameters during function calls, and function results during returns.

Using rvalue references (C++11)

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation might change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

In C++11, you can overload functions based on the value categories of arguments
and similarly have lvalueness detected by template argument deduction. You can
also have an rvalue bound to an rvalue reference and modify the rvalue through
the reference. This enables a programming technique with which you can reuse the
resources of expiring objects and therefore improve the performance of your
libraries, especially if you use generic code with class types, for example, template
data structures. Additionally, the value category can be considered when writing a
forwarding function.

Move semantics

When you want to optimize the use of temporary values, you can use a move
operation in what is known as destructive copying. Consider the following string
concatenation and assignment:

64 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

std::string a, b, c;
c = a + b;

In this program, the compiler first stores the result of a + b in an internal
temporary variable, that is, an rvalue.

The signature of a normal copy assignment operator is as follows:
string& operator = (const string&)

With this copy assignment operator, the assignment consists of the following steps:
1. Copy the temporary variable into c using a deep-copy operation.
2. Discard the temporary variable.

Deep copying the temporary variable into c is not efficient because the temporary
variable is discarded at the next step.

To avoid the needless duplication of the temporary variable, you can implement an
assignment operator that moves the variable instead of copying the variable. That
is, the argument of the operator is modified by the operation. A move operation is
faster because it is done through pointer manipulation, but it requires a reference
through which the source variable can be manipulated. However, a + b is a
temporary value, which is not easily differentiated from a const-qualified value in
C++ before C++11 for the purposes of overload resolution.

With rvalue references, you can create a move assignment operator as follows:
string& operator= (string&&)

With this move assignment operator, the memory allocated for the underlying
C-style string in the result of a + b is assigned to c. Therefore, it is not necessary
to allocate new memory to hold the underlying string in c and to copy the
contents to the new memory.

The following code can be an implementation of the string move assignment
operator:
string& string::operator=(string&& str)
{

// The named rvalue reference str acts like an lvalue
std::swap(_capacity, str._capacity);
std::swap(_length, str._length);

// char* _str points to a character array and is a
// member variable of the string class
std::swap(_str, str._str);
return *this;

}

However, in this implementation, the memory originally held by the string being
assigned to is not freed until str is destroyed. The following implementation that
uses a local variable is more memory efficient:
string& string::operator=(string&& parm_str)
{

// The named rvalue reference parm_str acts like an lvalue
string sink_str;
std::swap(sink_str, parm_str);
std::swap(*this, sink_str);
return *this;

}

Chapter 10. Coding your application to improve performance 65

In a similar manner, the following program is a possible implementation of a
string concatenation operator:
string operator+(string&& a, const string& b)
{

return std::move(a+=b);
}

Note: The std::move function only casts the result of a+=b to an rvalue reference,
without moving anything. The return value is constructed using a move
constructor because the expression std::move(a+=b) is an rvalue. The relationship
between a move constructor and a copy constructor is analogous to the
relationship between a move assignment operator and a copy assignment operator.

Perfect forwarding

The std::forward function is a helper template, much like std::move. It returns a
reference to its function argument, with the resulting value category determined by
the template type argument. In an instantiation of a forwarding function template,
the value category of an argument is encoded as part of the deduced type for the
related template type parameter. The deduced type is passed to the std::forward
function.

The wrapper function in the following example is a forwarding function template
that forwards to the do_work function. Use std::forward in forwarding functions
on the calls to the target functions. The following example also uses the decltype
and trailing return type features to produce a forwarding function that forwards to
one of the do_work functions. Calling the wrapper function with any argument
results in a call to a do_work function if a suitable overload function exists. Extra
temporaries are not created and overload resolution on the forwarding call resolves
to the same overload as it would if the do_work function were called directly.
struct s1 *do_work(const int&); // #1
struct s2 *do_work(const double&); // #2
struct s3 *do_work(int&&); // #3
struct s4 *do_work(double&&); // #4
template <typename T> auto wrapper(T && a)->

decltype(do_work(std::forward<T>(*static_cast<typename std::remove_reference<T>
::type*>(0))))

{
return do_work(std::forward<T>(a));

}
template <typename T> void tPtr(T *t);
int main()
{

int x;
double y;
tPtr<s1>(wrapper(x)); // calls #1
tPtr<s2>(wrapper(y)); // calls #2
tPtr<s3>(wrapper(0)); // calls #3
tPtr<s4>(wrapper(1.0)); // calls #4

}

Related information in the XL C/C++ Compiler Reference

-qlanglvl

66 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Using visibility attributes (IBM extension)
Visibility attributes describe whether and how an entity that is defined in one
module can be referenced or used in other modules. Visibility attributes affect
entities with external linkage only, and they cannot increase the visibility of other
entities. By specifying visibility attributes for entities, you can export only the
entities that are necessary to shared libraries. With this feature, you can get the
following benefits:
v Decrease the size of shared libraries.
v Reduce the possibility of symbol collision.
v Allow more optimization for the compile and link phases.
v Improve the efficiency of dynamic linking.
v Within a shared library, allow direct access instead of via a TOC pointer.

Supported types of entities

C++

The compiler supports visibility attributes for the following entities:
v Function
v Variable
v Structure/union/class
v Enumeration
v Template
v Namespace

C++

C

The compiler supports visibility attributes for the following entities:
v Function
v Variable

Note: Data types in the C language do not have external linkage, so you cannot
specify visibility attributes for C data types.

C

Related information in the XL C/C++ Compiler Reference

-fvisibility

-shared (-qmkshrobj)

#pragma GCC visibility push, #pragma GCC visibility pop
Related information in the XL C/C++ Language Reference

The visibility variable attribute (IBM extension)

The visibility function attribute (IBM extension)

The visibility type attribute (C++ only) (IBM extension)

Chapter 10. Coding your application to improve performance 67

The visibility namespace attribute (C++ only) (IBM extension)

Types of visibility attributes
The following table describes different visibility attributes.

Table 18. Visibility attributes

Attribute Description

default Indicates that external linkage entities have the default attribute in object
files. These entities are exported in shared libraries, and can be preempted.

protected Indicates that external linkage entities have the protected attribute in object
files. These entities are exported in shared libraries, but cannot be
preempted.

hidden Indicates that external linkage entities have the hidden attribute in object
files. These entities are not exported in shared libraries, but their addresses
can be referenced indirectly through pointers.

internal Indicates that external linkage entities have the internal attribute in object
files. These entities are not exported in shared libraries, and their addresses
are not available to other modules in shared libraries.

Notes:

v In this release, the hidden and internal visibility attributes are the same. The addresses
of the entities that are specified with either of these visibility attributes can be referenced
indirectly through pointers.

Example: Differences among the default, protected, hidden, and internal visibility
attributes
//a.c
#include <stdio.h>
void __attribute__((visibility("default"))) func1(){

printf("func1 in the shared library");
}
void __attribute__((visibility("protected"))) func2(){

printf("func2 in the shared library");
}
void __attribute__((visibility("hidden"))) func3(){

printf("func3 in the shared library");
}
void __attribute__((visibility("internal"))) func4(){

printf("func4 in the shared library");
}

//a.h
extern void func1();
extern void func2();
extern void func3();
extern void func4();

//b.c
#include "a.h"
void temp(){

func1();
func2();

}

//b.h
extern void temp();

//main.c
#include "a.h"
#include "b.h"

68 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

void func1(){
printf("func1 in b.c");

}
void func2(){

printf("func2 in b.c");
}
void main(){

temp();
// func3(); // error
// func4(); // error

}

You can use the following commands to create a shared library named libtest.so:
xlc -c -fPIC a.c b.c
xlc -shared -o libtest.so a.o b.o

Then, you can dynamically link libtest.so during run time by using the following
commands:
xlc main.c -L. -ltest -o main
./main

The output of the example is as follows:
func1 in b.c
func2 in the shared library

The visibility attribute of function func1() is default, so it is preempted by the
function with the same name in main.c. The visibility attribute of function func2()
is protected, so it cannot be preempted. The compiler always calls func2() that is
defined in the shared library libtest.so. The visibility attribute of function
func3() is hidden, so it is not exported in the shared library. The compiler issues a
link error to indicate that the definition of func3() cannot be found. The same
issue is with function func4() whose visibility attribute is internal.

Rules of visibility attributes
Priority of visibility attributes

The visibility attributes have a priority sequence, which is default < protected <
hidden < internal. You can see Example 3 and Example 9 for reference.

Rules of determining the visibility attributes

C

The visibility attribute of an entity is determined by the following rules:
1. If the entity has an explicitly specified visibility attribute, the specified visibility

attribute takes effect.
2. Otherwise, if the entity has a pair of enclosing pragma directives, the visibility

attribute that is specified by the pragma directives takes effect.
3. Otherwise, the setting of the -fvisibility option takes effect.

C

C++

The visibility attribute of an entity is determined by the following rules:

Chapter 10. Coding your application to improve performance 69

1. If the entity has an explicitly specified visibility attribute, the specified visibility
attribute takes effect.

2. Otherwise, if the entity is a template instantiation or specialization, and the
template has a visibility attribute, the visibility attribute of the entity is
propagated from that of the template. See Example 1.

3. Otherwise, if the entity has any of the following enclosing contexts, the
visibility attribute of this entity is propagated from that of the nearest context.
See Example 2. For the details of propagation rules, see “Propagation rules
(C++ only)” on page 75.
v Structure/class
v Enumeration
v Namespace
v Pragma directives

Restriction: Pragma directives do not affect the visibility attributes of class
members and template specializations.

4. Otherwise, the visibility attribute of the entity is determined by the following
visibility attribute settings. The visibility attribute that has the highest priority
is the actual visibility attribute of the entity. See Example 3. For the priority of
the visibility attributes, see Priority of visibility attributes.
v The setting of the -fvisibility option.
v The visibility attribute of the type of the entity, if the entity is a variable and

its type has a visibility attribute.
v The visibility attribute of the return type of the entity, if the entity is a

function and its return type has a visibility attribute.
v The visibility attributes of the parameter types of the entity, if the entity is a

function and its parameter types have visibility attributes.
v The visibility attributes of template arguments or template parameters of the

entity, if the entity is a template and its arguments or parameters have
visibility attributes.

Example 1

In the following example, template template<typename T, typename U> B{} has the
protected visibility attribute. The visibility attribute is propagated to those of
template specialization template<> class B<char, char>{} , partial specialization
template<typename T> class B<T, float>{} , and all the types of template
instantiations.
class __attribute__((visibility("internal"))) A{} vis_v_a; //internal

//protected
template<typename T, typename U>
class __attribute__((visibility("protected"))) B{

public:
void func(){}

};

//protected
template<>
class B<char, char>{

public:
void func(){}

};

//protected
template<typename T>

70 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

class B<T, float>{
public:
void func(){}

};

B<int, int> a; //protected
B<A, int> b; //protected
B<char, char> c; //protected
B<int, float> d; //protected
B<A, float> e; //protected

int main(){
a.func();
b.func();
c.func();
d.func();
e.func();

}

Example 2

In the following example, the nearest enclosing context of function func() is class
B, so the visibility attribute of func() is propagated from that of class B, which is
hidden. The nearest enclosing context of class A is the pragma directives whose
setting is protected, so the visibility of class A is protected.
namespace __attribute__((visibility("internal"))) ns{
#pragma GCC visibility push(protected)

class A{
class __attribute__((visibility("hidden"))) B{

int func(){};
};

};
#pragma GCC visibility pop
};

Example 3

In the following example, the visibility attribute specified by the -fvisibility
option is protected. The type of variable vis_v_d is class CD, whose visibility
attribute is default. The visibility attribute that has a higher priority of these two
attributes is protected, so the actual visibility attribute of variable vis_v_d is
protected. The same rule applies to the determination of the visibility attributes of
variables vis_v_p, vis_v_h, and vis_v_i. For functions vis_f_fun1, vis_f_fun2, and
vis_f_fun3, their visibility attributes are determined by those of their parameter
types, return types, and the setting of the -fvisibility option. For template
functions vis_f_template1 and vis_f_template2, their visibility attributes are
determined by those of their template arguments, template parameters, function
parameter types, return types, and the setting of the -fvisibility option. The
visibility attribute that has the highest priority takes effect.
//The -fvisibility=protected option is specified
class __attribute__((visibility("default"))) CD {} vis_v_d; //protected
class __attribute__((visibility("protected"))) CP {} vis_v_p; //protected
class __attribute__((visibility("hidden"))) CH {} vis_v_h; //hidden
class __attribute__((visibility("internal"))) CI {} vis_v_i; //internal

void vis_f_fun1(CH a, CP b, CD c, CI d) {} //internal
void vis_f_fun2(CD a) {} //protected
CH vis_f_fun3(CI a, CP b) {} //internal

template<class T, class U> T vis_f_template1(T t, U u){}
template<class T, int N> void vis_f_template2(T t, int i){}

Chapter 10. Coding your application to improve performance 71

int main(){
vis_f_template1<CD, CH>(vis_v_d, vis_v_p); //hidden
vis_f_template2<CD, 10)(vis_v_p, 10); // protected

}

C++

Rules and restrictions of using the visibility attributes

When you specify visibility attributes for entities, consider the following rules and
restrictions:
v You can specify visibility attributes only for entities that have external linkage.

The compiler issues a warning message when you set the visibility attribute for
entities with other linkages, and the specified visibility attribute is ignored. See
Example 4.

v You cannot specify different visibility attributes in the same declaration or
definition of an entity; otherwise, the compiler issues an error message. See
Example 5.

v If an entity has more than one declaration that is specified with different
visibility attributes, the visibility attribute of the entity is the first visibility
attribute that the compiler processes. See Example 6.

v You cannot specify visibility attributes in the typedef statements. See Example 7.
v C++ If type T has a visibility attribute, types T*, T&, and T&& have the same

visibility attribute with that of type T. See Example 8.
v C++ If a class and its enclosing classes do not have explicitly specified

visibilities and the visibility attribute of the class has a lower priority than those
of its nonstatic member types and its bases classes, the compiler issues a
warning message. See Example 9. For the priority of the visibility attributes, see
Priority of visibility attributes. C++

v C++ The visibility attribute of a namespace does not apply for the
namespace with the same name. See Example 10. C++

v C++ If you specify a visibility attribute for a global new or delete operator,
the compiler issues a warning message to ignore the visibility attribute unless
the visibility attribute is default. See Example 11. C++

Example 4

In this example, because m and i have internal linkage and j has no linkage, the
compiler ignores the visibility attributes of variables m, i, and j.
static int m __attribute__((visibility("protected")));
int n __attribute__((visibility("protected")));

int main(){
int i __attribute__((visibility("protected")));
static int j __attribute__((visibility("protected)));

}

Example 5

In this example, the compiler issues an error message to indicate that you cannot
specify two different visibility attributes at the same time in the definition of
variable m.
//error
int m __attribute__((visibility("hidden"))) __attribute__((visibility("protected")));

72 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Example 6

In this example, the first declaration of function fun() that the compiler processes
is extern void fun() __attribute__((visibility("hidden"))), so the visibility
attribute of fun() is hidden.
extern void fun() __attribute__((visibility("hidden")));
extern void fun() __attribute__((visibility("protected")));

int main(){
fun();

}

Example 7

In this example, the visibility attribute of variable vis_v_ti is default, which is not
affected by the setting in the typedef statement.
//The -fvisibility=default option is specified.
typedef int __attribute__((visibility("protected"))) INT;
INT vis_v_ti = 1;

C++

Example 8

In this example, the visibility attribute of class CP is protected, so the visibility
attribute of CP* and CP& is also protected.
class __attribute__((visibility("protected"))) CP {} vis_v_p;
class CP* vis_v_p_p = &vis_v_p; //protected
class CP& vis_v_lr_p = vis_v_p; //protected

Example 9

In this example, the compiler accepts the default visibility attribute of class
Derived1 because the visibility attribute is explicitly specified for class Derived1.
The compiler also accepts the protected visibility attribute of class Derived2
because the visibility attribute is propagated from that of the enclosing class A.
Class Derived3 does not have an explicitly specified visibility attribute or an
enclosing class, and its visibility attribute is default. The compiler issues a warning
message because the visibility attribute of class Derived3 has a lower priority than
those of its parent class Base and the nonstatic member function fun().
//The -fvisibility=default option is specified.
//base class
struct __attribute__((visibility("hidden"))) Base{

int vis_f_fun(){
return 0;

}
};

//Ok
struct __attribute__((visibility("default"))) Derived1: public Base{

int vis_f_fun(){
return Base::vis_f_fun();

};
}vis_v_d;

//Ok
struct __attribute__((visibility("protected"))) A{

struct Derived2: public Base{
int vis_f_fun(){

Chapter 10. Coding your application to improve performance 73

__attribute__((visibility("protected")))
};

}
};

//Warning
struct Derived3: public Base{

//Warning
int fun() __attribute__((visibility("protected"))){};

};

Example 10

In this example, the visibility attribute of the definition of namespace X does not
apply to the extension of namespace X.
//The -fvisibility=default option is specified.
//namespace definition
namespace X __attribute__((visibility("protected"))){

int a; //protected
int b; //protected

}
//namespace extension
namespace X {

int c; //default
int d; //default

}
//equivalent to namespace X
namespace Y {

int __attribute__((visibility("protected"))) a; //protected
int __attribute__((visibility("protected"))) b; //protected
int c; //default
int d; //default

}

Example 11

In this example, the new and delete operators defined outside of class A are global
functions, so the explicitly specified hidden visibility attribute does not take effect.
The new and delete operations defined within class A are local ones, so you can
specify visibility attributes for them.
#include <stddef.h>
//default
void* operator new(size_t) throw (std::bad_alloc) __attribute__((visibility("hidden")))
{

return 0;
};
void operator delete(void*) throw () __attribute__((visibility("hidden"))){}

class A{
public:
//hidden
void* operator new(size_t) throw (std::bad_alloc) __attribute__((visibility("hidden")))
{

return 0;
};
void operator delete(void*) throw () __attribute__((visibility("hidden"))){}

};

C++

74 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Propagation rules (C++ only)

Visibility attributes can be propagated from one entity to other entities. The
following table lists all the cases for visibility propagation.

Table 19. Propagation of visibility attributes

Original
entity

Destination
entities Example

Namespace Named
namespaces that
are defined in the
original
namespace

namespace A __attribute__((visibility("hidden"))){
// Namespace B has the hidden visibility attribute,
// which is propagated from namespace A.
namespace B{}
// The unnamed namespace does not have a visibility
// attribute.
namespace{}

}

Namespace Classes that are
defined in the
original
namespace

namespace A __attribute__((visibility("hidden"))){
// Class B has the hidden visibility attribute,
// which is propagated from namespace A.
class B;
// Object x has the hidden visibility attribute,
// which is propagated from namespace A.
class{} x;

}

Namespace Functions that are
defined in the
original
namespace

namespace A __attribute__((visibility("hidden"))){
// Function fun() has the hidden visibility
// attribute, which is propagated from namespace A.
void fun(){};

}

Namespace Objects that are
defined in the
original
namespace

namespace A __attribute__((visibility("hidden"))){
// Variable m has the hidden visibility attribute,
// which is propagated from namespace A.
int m;

}

Class Member classes class __attribute__((visibility("hidden"))) A{
// Class B has the hidden visibility attribute,
// which is propagated from class A.
class B{};

}

Class Member
functions or static
member variables

class __attribute__((visibility("hidden"))) A{
// Function fun() has the hidden visibility
// attribute, which is propagated from class A.
void fun(){};
// Static variable m has the hidden visibility
// attribute, which is propagated from class A.
static int m;

}

Chapter 10. Coding your application to improve performance 75

Table 19. Propagation of visibility attributes (continued)

Original
entity

Destination
entities Example

Template Template
instantiations/
template
specifications/
template partial
specializations

template<typename T, typename U>
class __attribute__((visibility("hidden"))) A{

public:
void fun(){};

};

// Template instantiation class A<int, char> has the
// hidden visibility attribute, which is propagated
// from template class A(T,U).
class A<int, char>{

public:
void fun(){};

};

// Template specification
// template<> class A<double, double> has the hidden
// visibility attribute, which is propagated
// from template class A(T,U).
template<> class A<double, double>{

public:
void fun(){};

};

// Template partial specification
// template<typename T> class A<T, char> has the
// hidden visibility attribute, which is propagated
// from template class A(T,U).
template<typename T> class A<T, char>{

public:
void fun(){};

};

Template
argument/
parameter

Template
instantiations/
template
specifications/
template partial
specializations

template<typename T> void fun1(){}
template<typename T> void fun2(T){}

class M __attribute__((visibility("hidden"))){} m;

// Template instantiation fun1<M>() has the hidden
// visibility attribute, which is propagated from
// template argument M.
fun1<M>();

// Template instantiation fun2<M>(M) has the hidden
// visibility attribute, which is propagated from
// template parameter m.
fun2(m);

// Template specification fun1<M>() has the hidden
// visibility attribute, which is propagated from
// template argument M.
template<> void fun1<M>();

Inline
function

Static local
variables

inline void __attribute__((visibility("hidden")))
fun(){
// Variable m has the hidden visibility attribute,
// which is propagated from inline function fun().
static int m = 4;

}

76 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Table 19. Propagation of visibility attributes (continued)

Original
entity

Destination
entities Example

Type Entities of the
original type

class __attribute__((visibility("hidden"))) A {};

// Object x has the hidden visibility attribute,
// which is propagated from class A.
class A x;

Function
return
type

Function class __attribute__((visibility("hidden"))) A{};
// Function fun() has the hidden visibility attribute,
// which is propagated from function return type A.
A fun();

Function
parameter
type

Function class __attribute__((visibility("hidden"))) A{};
// Function fun(class A) has the hidden visibility
// attribute, which is propagated from function
// parameter type A.
void fun(class A);

Specifying visibility attributes using the -fvisibility option
You can use the -fvisibility option to globally set visibility attributes for external
linkage entities in your program. The entities have the visibility attribute that is
specified by the -fvisibility option if they do not get visibility attributes from
pragma directives, explicitly specified attributes, or propagation rules.

Specifying visibility attributes using pragma preprocessor
directives

You can selectively set visibility attributes for entities by using pairs of the #pragma
GCC visibility push and #pragma GCC visibility pop preprocessor directives
throughout your source program.

The compiler supports nested visibility pragma preprocessor directives. If entities
are included in several pairs of the nested #pragma GCC visibility push and
#pragma GCC visibility pop directives, the nearest pair of directives takes effect.
See Example 1.

You must not specify the visibility pragma directives for header files. Otherwise,
your program might exhibit undefined behaviors. See Example 2.

C++ Visibility pragma directives #pragma GCC visibility push and #pragma
GCC visibility pop affect only namespace-scope declarations. Class members and
template specializations are not affected. See Example 3 and Example 4. C++

Examples

Example 1

In this example, the function and variables have the visibility attributes that are
specified by their nearest pairs of pragma preprocessor directives.
#pragma GCC visibility push(default)
namespace ns
{

void vis_f_fun() {} //default
pragma GCC visibility push(internal)

int vis_v_i; //internal
pragma GCC visibility push(protected)

Chapter 10. Coding your application to improve performance 77

int vis_v_j; //protected
pragma GCC visibility push(hidden)

int vis_v_k; //hidden
pragma GCC visibility pop
pragma GCC visibility pop
pragma GCC visibility pop
}
#pragma GCC visibility pop

Example 2

In this example, the compiler issues a link error message to indicate that the
definition of the printf() library function cannot be found.
#pragma GCC visibility push(hidden)
#include <stdio.h>
#pragma GCC visibility pop

int main(){
printf("hello world!");
return 0;

}

C++

Example 3

In this example, the visibility attribute of class members vis_v_i and vis_f_fun()
is hidden. The visibility attribute is propagated from that of the class, but is not
affected by the pragma directives.
class __attribute__((visibility("hidden"))) A{
#pragma GCC visibility push(protected)

public:
static int vis_v_i;
void vis_f_fun() {}

#pragma GCC visibility pop
} vis_v_a;

Example 4

In this example, the visibility attribute of function vis_f_fun() is hidden. The
visibility attribute is propagated from that of the template specialization or partial
specialization, but is not affected by the pragma directives.
namespace ns{

#pragma GCC visibility push(hidden)
template <typename T, typename U> class TA{

public:
void vis_f_fun(){}

};
#pragma GCC visibility pop

#pragma GCC visibility push(protected)
//The visibility attribute of the template specialization is hidden.
template <> class TA<char, char>{

public:
void vis_f_fun(){}

};
#pragma GCC visibility pop

#pragma GCC visibility push(default)
//The visibility attribute of the template partial specialization is hidden.
template <typename T> class TA<T, long>{

78 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

public:
void vis_f_fun(){}

};
#pragma GCC visibility pop

C++

Chapter 10. Coding your application to improve performance 79

80 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Chapter 11. Using the high performance libraries

IBM XL C/C++ for Linux, V13.1.1 is shipped with a set of libraries for
high-performance mathematical computing:
v The Mathematical Acceleration Subsystem (MASS) is a set of libraries of tuned

mathematical intrinsic functions that provide improved performance over the
corresponding standard system math library functions. MASS is described in
“Using the Mathematical Acceleration Subsystem libraries (MASS).”

v The Basic Linear Algebra Subprograms (BLAS) are a set of routines which
provide matrix/vector multiplication functions tuned for PowerPC architectures.
The BLAS functions are described in “Using the Basic Linear Algebra
Subprograms – BLAS” on page 92.

Using the Mathematical Acceleration Subsystem libraries (MASS)
XL C/C++ is shipped with a set of Mathematical Acceleration Subsystem (MASS)
libraries for high-performance mathematical computing.

The MASS libraries consist of a library of scalar C/C++ functions described in
“Using the scalar library” on page 82, a set of vector libraries tuned for specific
architectures described in “Using the vector libraries” on page 84, and a set of
SIMD libraries tuned for specific architectures described in “Using the SIMD
libraries” on page 88. The functions contained in both scalar and vector libraries
are automatically called at certain levels of optimization, but you can also call
them explicitly in your programs. Note that accuracy and exception handling
might not be identical in MASS functions and system library functions.

The MASS functions must run with the default rounding mode and floating-point
exception trapping settings.

When you compile programs with any of the following sets of options:
v -qhot -qignerrno -qnostrict

v -qhot -qignerrno -qstrict=nolibrary

v -qhot -O3

v -O4

v -O5

the compiler automatically attempts to vectorize calls to system math functions by
calling the equivalent MASS vector functions (with the exceptions of functions
vdnint, vdint, vcosisin, vscosisin, vqdrt, vsqdrt, vrqdrt, vsrqdrt, vpopcnt4,
vpopcnt8, vexp2, vexp2m1, vsexp2, vsexp2m1, vlog2, vlog21p, vslog2, and vslog21p).
If it cannot vectorize, it automatically tries to call the equivalent MASS scalar
functions. For automatic vectorization or scalarization, the compiler uses versions
of the MASS functions contained in the XLOPT library libxlopt.a.

In addition to any of the preceding sets of options, when the -qipa option is in
effect, if the compiler cannot vectorize, it tries to inline the MASS scalar functions
before deciding to call them.

© Copyright IBM Corp. 1996, 2014 81

“Compiling and linking a program with MASS” on page 91 describes how to
compile and link a program that uses the MASS libraries, and how to selectively
use the MASS scalar library functions in conjunction with the regular system
libraries.

Related external information

Mathematical Acceleration Subsystem website, available at
http://www.ibm.com/software/awdtools/mass/

Using the scalar library
The MASS scalar library libmass.a contains an accelerated set of frequently used
math intrinsic functions that provide improved performance over the
corresponding standard system library functions. The MASS scalar functions are
used when explicitly linking libmass.a.

If you want to explicitly call the MASS scalar functions, you can take the following
steps:
1. Provide the prototypes for the functions by including math.h and mass.h in

your source files.
2. Link the MASS scalar library with your application. For instructions, see

“Compiling and linking a program with MASS” on page 91.

The MASS scalar functions accept double-precision parameters and return a
double-precision result, or accept single-precision parameters and return a
single-precision result, except sincos which gives 2 double-precision results. They
are summarized in Table 20.

Table 20. MASS scalar functions

Double-
precision
function

Single-
precision
function

Description Double-precision function
prototype

Single-precision function
prototype

acos acosf Returns the arccosine of
x

double acos (double x); float acosf (float x);

acosh acoshf Returns the hyperbolic
arccosine of x

double acosh (double x); float acoshf (float x);

anint Returns the rounded
integer value of x

float anint (float x);

asin asinf Returns the arcsine of x double asin (double x); float asinf (float x);

asinh asinhf Returns the hyperbolic
arcsine of x

double asinh (double x); float asinhf (float x);

atan2 atan2f Returns the arctangent
of x/y

double atan2 (double x,
double y);

float atan2f (float x, float y);

atan atanf Returns the arctangent
of x

double atan (double x); float atanf (float x);

atanh atanhf Returns the hyperbolic
arctangent of x

double atanh (double x); float atanhf (float x);

cbrt cbrtf Returns the cube root
of x

double cbrt (double x); float cbrtf (float x);

copysign copysignf Returns x with the sign
of y

double copysign (double
x,double y);

float copysignf (float x);

cos cosf Returns the cosine of x double cos (double x); float cosf (float x);

82 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

http://www.ibm.com/software/awdtools/mass/
http://www.ibm.com/software/awdtools/mass/

Table 20. MASS scalar functions (continued)

Double-
precision
function

Single-
precision
function

Description Double-precision function
prototype

Single-precision function
prototype

cosh coshf Returns the hyperbolic
cosine of x

double cosh (double x); float coshf (float x);

cosisin Returns a complex
number with the real
part the cosine of x and
the imaginary part the
sine of x.

double_Complex cosisin
(double);

dnint Returns the nearest
integer to x (as a
double)

double dnint (double x);

erf erff Returns the error
function of x

double erf (double x); float erff (float x);

erfc erfcf Returns the
complementary error
function of x

double erfc (double x); float erfcf (float x);

exp expf Returns the exponential
function of x

double exp (double x); float expf (float x);

expm1 expm1f Returns (the
exponential function of
x) - 1

double expm1 (double x); float expm1f (float x);

hypot hypotf Returns the square root
of x2 + y2

double hypot (double x,
double y);

float hypotf (float x, float y);

lgamma lgammaf Returns the natural
logarithm of the
absolute value of the
Gamma function of x

double lgamma (double x); float lgammaf (float x);

log logf Returns the natural
logarithm of x

double log (double x); float logf (float x);

log10 log10f Returns the base 10
logarithm of x

double log10 (double x); float log10f (float x);

log1p log1pf Returns the natural
logarithm of (x + 1)

double log1p (double x); float log1pf (float x);

pow powf Returns x raised to the
power y

double pow (double x,
double y);

float powf (float x, float y);

rsqrt Returns the reciprocal
of the square root of x

double rsqrt (double x);

sin sinf Returns the sine of x double sin (double x); float sinf (float x);

sincos Sets *s to the sine of x
and *c to the cosine of
x

void sincos (double x,
double* s, double* c);

sinh sinhf Returns the hyperbolic
sine of x

double sinh (double x); float sinhf (float x);

sqrt Returns the square root
of x

double sqrt (double x);

tan tanf Returns the tangent of x double tan (double x); float tanf (float x);

tanh tanhf Returns the hyperbolic
tangent of x

double tanh (double x); float tanhf (float x);

Chapter 11. Using the high performance libraries 83

Notes:

v The trigonometric functions (sin, cos, tan) return NaN (Not-a-Number) for large
arguments (where the absolute value is greater than 250pi).

v In some cases, the MASS functions are not as accurate as the ones in the libm.a
library, and they might handle edge cases differently (sqrt(Inf), for example).

v See the Mathematical Acceleration Subsystem website, under Product Support,
Documentation, for accuracy comparisons with libm.a.
Related external information

Mathematical Acceleration Subsystem website, available at
http://www.ibm.com/software/awdtools/mass/

Using the vector libraries
If you want to explicitly call any of the MASS vector functions, you can do so by
including massv.h in your source files and linking your application with the
appropriate vector library. Information about linking is provided in “Compiling
and linking a program with MASS” on page 91.

libmassv.a
The generic vector library that runs on any supported POWER® processor.
Unless your application requires this portability, use the appropriate
architecture-specific library below for maximum performance.

libmassvp8.a
Contains functions that have been tuned for the POWER8 architecture.

The single-precision and double-precision floating-point functions contained in the
vector libraries are summarized in Table 21 on page 85. The integer functions
contained in the vector libraries are summarized in Table 22 on page 87. Note that
in C and C++ applications, only call by reference is supported, even for scalar
arguments.

With the exception of a few functions (described in the following paragraph), all of
the floating-point functions in the vector libraries accept three parameters:
v A double-precision (for double-precision functions) or single-precision (for

single-precision functions) vector output parameter
v A double-precision (for double-precision functions) or single-precision (for

single-precision functions) vector input parameter
v An integer vector-length parameter.

The functions are of the form
function_name (y,x,n)

where y is the target vector, x is the source vector, and n is the vector length. The
parameters y and x are assumed to be double-precision for functions with the
prefix v, and single-precision for functions with the prefix vs. As an example, the
following code:
#include <massv.h>

double x[500], y[500];
int n;
n = 500;
...
vexp (y, x, &n);

84 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

http://www-03.ibm.com/software/products/us/en/mathaccesubsfami/
http://www.ibm.com/software/awdtools/mass/
http://www.ibm.com/software/awdtools/mass/

outputs a vector y of length 500 whose elements are exp(x[i]), where i=0,...,499.

The functions vdiv, vsincos, vpow, and vatan2 (and their single-precision versions,
vsdiv, vssincos, vspow, and vsatan2) take four arguments. The functions vdiv,
vpow, and vatan2 take the arguments (z,x,y,n). The function vdiv outputs a vector z
whose elements are x[i]/y[i], where i=0,..,*n–1. The function vpow outputs a vector
z whose elements are x[i]y[i], where i=0,..,*n–1. The function vatan2 outputs a vector
z whose elements are atan(x[i]/y[i]), where i=0,..,*n–1. The function vsincos takes
the arguments (y,z,x,n), and outputs two vectors, y and z, whose elements are
sin(x[i]) and cos(x[i]), respectively.

In vcosisin(y,x,n) and vscosisin(y,x,n), x is a vector of n elements and the
function outputs a vector y of n __Complex elements of the form (cos(x[i]),sin(x[i])).

Table 21. MASS floating-point vector functions

Double-
precision
function

Single-
precision
function

Description Double-precision function
prototype

Single-precision function
prototype

vacos vsacos Sets y[i] to the arc cosine
of x[i], for i=0,..,*n-1

void vacos (double y[],
double x[], int *n);

void vsacos (float y[], float
x[], int *n);

vacosh vsacosh Sets y[i] to the hyperbolic
arc cosine of x[i], for
i=0,..,*n-1

void vacosh (double y[],
double x[], int *n);

void vsacosh (float y[], float
x[], int *n);

vasin vsasin Sets y[i] to the arc sine of
x[i], for i=0,..,*n-1

void vasin (double y[],
double x[], int *n);

void vsasin (float y[], float
x[], int *n);

vasinh vsasinh Sets y[i] to the hyperbolic
arc sine of x[i], for
i=0,..,*n-1

void vasinh (double y[],
double x[], int *n);

void vsasinh (float y[], float
x[], int *n);

vatan2 vsatan2 Sets z[i] to the arc
tangent of x[i]/y[i], for
i=0,..,*n-1

void vatan2 (double z[],
double x[], double y[], int
*n);

void vsatan2 (float z[], float
x[], float y[], int *n);

vatanh vsatanh Sets y[i] to the hyperbolic
arc tangent of x[i], for
i=0,..,*n-1

void vatanh (double y[],
double x[], int *n);

void vsatanh (float y[], float
x[], int *n);

vcbrt vscbrt Sets y[i] to the cube root
of x[i], for i=0,..,*n-1

void vcbrt (double y[],
double x[], int *n);

void vscbrt (float y[], float
x[], int *n);

vcos vscos Sets y[i] to the cosine of
x[i], for i=0,..,*n-1

void vcos (double y[],
double x[], int *n);

void vscos (float y[], float
x[], int *n);

vcosh vscosh Sets y[i] to the hyperbolic
cosine of x[i], for
i=0,..,*n-1

void vcosh (double y[],
double x[], int *n);

void vscosh (float y[], float
x[], int *n);

vcosisin vscosisin Sets the real part of y[i]
to the cosine of x[i] and
the imaginary part of y[i]
to the sine of x[i], for
i=0,..,*n-1

void vcosisin (double
_Complex y[], double x[], int
*n);

void vscosisin (float
_Complex y[], float x[], int
*n);

vdint Sets y[i] to the integer
truncation of x[i], for
i=0,..,*n-1

void vdint (double y[],
double x[], int *n);

vdiv vsdiv Sets z[i] to x[i]/y[i], for
i=0,..,*n–1

void vdiv (double z[],
double x[], double y[], int
*n);

void vsdiv (float z[], float
x[], float y[], int *n);

Chapter 11. Using the high performance libraries 85

Table 21. MASS floating-point vector functions (continued)

Double-
precision
function

Single-
precision
function

Description Double-precision function
prototype

Single-precision function
prototype

vdnint Sets y[i] to the nearest
integer to x[i], for
i=0,..,*n-1

void vdnint (double y[],
double x[], int *n);

verf vserf Sets y[i] to the error
function of x[i], for
i=0,..,*n-1

void verf (double y[], double
x[], int *n)

void vserf (float y[], float
x[], int *n)

verfc vserfc Sets y[i] to the
complimentary error
function of x[i], for
i=0,..,*n-1

void verfc (double y[],
double x[], int *n)

void vserfc (float y[], float
x[], int *n)

vexp vsexp Sets y[i] to the
exponential function of
x[i], for i=0,..,*n-1

void vexp (double y[],
double x[], int *n);

void vsexp (float y[], float
x[], int *n);

vexp2 vsexp2 Sets y[i] to 2 raised to the
power of x[i], for
i=1,..,*n-1

void vexp2 (double y[],
double x[], int *n);

void vsexp2 (float y[], float
x[], int *n);

vexpm1 vsexpm1 Sets y[i] to (the
exponential function of
x[i])-1, for i=0,..,*n-1

void vexpm1 (double y[],
double x[], int *n);

void vsexpm1 (float y[],
float x[], int *n);

vexp2m1 vsexp2m1 Sets y[i] to (2 raised to
the power of x[i]) - 1, for
i=1,..,*n-1

void vexp2m1 (double y[],
double x[], int *n);

void vsexp2m1 (float y[],
float x[], int *n);

vhypot vshypot Sets z[i] to the square
root of the sum of the
squares of x[i] and y[i],
for i=0,..,*n-1

void vhypot (double z[],
double x[], double y[], int
*n)

void vshypot (float z[], float
x[], float y[], int *n)

vlog vslog Sets y[i] to the natural
logarithm of x[i], for
i=0,..,*n-1

void vlog (double y[],
double x[], int *n);

void vslog (float y[], float
x[], int *n);

vlog2 vslog2 Sets y[i] to the base-2
logarithm of x[i], for
i=1,..,*n-1

void vlog2 (double y[],
double x[], int *n);

void vslog2 (float y[], float
x[], int *n);

vlog10 vslog10 Sets y[i] to the base-10
logarithm of x[i], for
i=0,..,*n-1

void vlog10 (double y[],
double x[], int *n);

void vslog10 (float y[], float
x[], int *n);

vlog1p vslog1p Sets y[i] to the natural
logarithm of (x[i]+1), for
i=0,..,*n-1

void vlog1p (double y[],
double x[], int *n);

void vslog1p (float y[], float
x[], int *n);

vlog21p vslog21p Sets y[i] to the base-2
logarithm of (x[i]+1), for
i=1,..,*n-1

void vlog21p (double y[],
double x[], int *n);

void vslog21p (float y[],
float x[], int *n);

vpow vspow Sets z[i] to x[i] raised to
the power y[i], for
i=0,..,*n-1

void vpow (double z[],
double x[], double y[], int
*n);

void vspow (float z[], float
x[], float y[], int *n);

vqdrt vsqdrt Sets y[i] to the fourth
root of x[i], for i=0,..,*n-1

void vqdrt (double y[],
double x[], int *n);

void vsqdrt (float y[], float
x[], int *n);

vrcbrt vsrcbrt Sets y[i] to the reciprocal
of the cube root of x[i],
for i=0,..,*n-1

void vrcbrt (double y[],
double x[], int *n);

void vsrcbrt (float y[], float
x[], int *n);

86 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Table 21. MASS floating-point vector functions (continued)

Double-
precision
function

Single-
precision
function

Description Double-precision function
prototype

Single-precision function
prototype

vrec vsrec Sets y[i] to the reciprocal
of x[i], for i=0,..,*n-1

void vrec (double y[],
double x[], int *n);

void vsrec (float y[], float
x[], int *n);

vrqdrt vsrqdrt Sets y[i] to the reciprocal
of the fourth root of x[i],
for i=0,..,*n-1

void vrqdrt (double y[],
double x[], int *n);

void vsrqdrt (float y[], float
x[], int *n);

vrsqrt vsrsqrt Sets y[i] to the reciprocal
of the square root of x[i],
for i=0,..,*n-1

void vrsqrt (double y[],
double x[], int *n);

void vsrsqrt (float y[], float
x[], int *n);

vsin vssin Sets y[i] to the sine of
x[i], for i=0,..,*n-1

void vsin (double y[],
double x[], int *n);

void vssin (float y[], float
x[], int *n);

vsincos vssincos Sets y[i] to the sine of
x[i] and z[i] to the
cosine of x[i], for
i=0,..,*n-1

void vsincos (double y[],
double z[], double x[], int
*n);

void vssincos (float y[],
float z[], float x[], int *n);

vsinh vssinh Sets y[i] to the hyperbolic
sine of x[i], for i=0,..,*n-1

void vsinh (double y[],
double x[], int *n);

void vssinh (float y[], float
x[], int *n);

vsqrt vssqrt Sets y[i] to the square
root of x[i], for i=0,..,*n-1

void vsqrt (double y[],
double x[], int *n);

void vssqrt (float y[], float
x[], int *n);

vtan vstan Sets y[i] to the tangent of
x[i], for i=0,..,*n-1

void vtan (double y[],
double x[], int *n);

void vstan (float y[], float
x[], int *n);

vtanh vstanh Sets y[i] to the hyperbolic
tangent of x[i], for
i=0,..,*n-1

void vtanh (double y[],
double x[], int *n);

void vstanh (float y[], float
x[], int *n);

Integer functions are of the form function_name (x[], *n), where x[] is a vector of
4-byte (for vpopcnt4) or 8-byte (for vpopcnt8) numeric objects (integral or
floating-point), and *n is the vector length.

Table 22. MASS integer vector library functions

Function Description Prototype

vpopcnt4 Returns the total number of 1 bits in the
concatenation of the binary
representation of x[i], for i=0,..,*n–1 ,
where x is a vector of 32-bit objects.

unsigned int vpopcnt4 (void *x,
int *n)

vpopcnt8 Returns the total number of 1 bits in the
concatenation of the binary
representation of x[i], for i=0,..,*n–1 ,
where x is a vector of 64-bit objects.

unsigned int vpopcnt8 (void *x,
int *n)

Overlap of input and output vectors

In most applications, the MASS vector functions are called with disjoint input and
output vectors; that is, the two vectors do not overlap in memory. Another
common usage scenario is to call them with the same vector for both input and
output parameters (for example, vsin (y, y, &n)). Other kinds of overlap (where
input and output vectors are neither disjoint nor identical) should be avoided,
since they may produce unexpected results:

Chapter 11. Using the high performance libraries 87

v For calls to vector functions that take one input and one output vector (for
example, vsin (y, x, &n)):
The vectors x[0:n-1] and y[0:n-1] must be either disjoint or identical, or
unexpected results may be obtained.

v For calls to vector functions that take two input vectors (for example, vatan2 (y,
x1, x2, &n)):
The previous restriction applies to both pairs of vectors y,x1 and y,x2. That is,
y[0:n-1] and x1[0:n-1] must be either disjoint or identical; and y[0:n-1] and
x2[0:n-1] must be either disjoint or identical.

v For calls to vector functions that take two output vectors (for example, vsincos
(y1, y2, x, &n)):
The above restriction applies to both pairs of vectors y1,x and y2,x. That is,
y1[0:n-1] and x[0:n-1] must be either disjoint or identical; and y2[0:n-1] and
x[0:n-1] must be either disjoint or identical. Also, the vectors y1[0:n-1] and
y2[0:n-1] must be disjoint.

Alignment of input and output vectors

To get the best performance from the POWER8 vector libraries, align the input and
output vectors on 8-byte (or better, 16-byte) boundaries.

Consistency of MASS vector functions

All the functions in the MASS vector libraries are consistent, in the sense that a
given input value will always produce the same result, regardless of its position in
the vector, and regardless of the vector length.

Related information in the XL C/C++ Compiler Reference

-D
Related external information

Mathematical Acceleration Subsystem website, available at
http://www.ibm.com/software/awdtools/mass/

Using the SIMD libraries
The MASS SIMD library libmass_simdp8.a contains a set of frequently used math
intrinsic functions that provide improved performance over the corresponding
standard system library functions. If you want to use the MASS SIMD functions,
you can do so as follows:
1. Provide the prototypes for the functions by including mass_simd.h in your

source files.
2. Link the MASS SIMD library libmass_simdp8.a with your application. For

instructions, see “Compiling and linking a program with MASS” on page 91.

The single/double-precision MASS SIMD functions accept single/double-precision
arguments and return single/double-precision results. They are summarized in
Table 23 on page 89.

88 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

http://www.ibm.com/software/awdtools/mass/
http://www.ibm.com/software/awdtools/mass/

Table 23. MASS SIMD functions

Double-
precision
function

Single-
precision
function

Description Double-precision function
prototype

Single-precision function
prototype

acosd2 acosf4 Computes the arc
cosine of each element
of vx.

vector double acosd2 (vector
double vx);

vector float acosf4 (vector float
vx);

acoshd2 acoshf4 Computes the arc
hyperbolic cosine of
each element of vx.

vector double acoshd2 (vector
double vx);

vector float acoshf4 (vector float
vx);

asind2 asinf4 Computes the arc sine
of each element of vx.

vector double asind2 (vector
double vx);

vector float asinf4 (vector float
vx);

asinhd2 asinhf4 Computes the arc
hyperbolic sine of each
element of vx.

vector double asinhd2 (vector
double vx);

vector float asinhf4 (vector float
vx);

atand2 atanf4 Computes the arc
tangent of each element
of vx.

vector double atand2 (vector
double vx);

vector float atanf4 (vector float
vx);

atan2d2 atan2f4 Computes the arc
tangent of each element
of vx/vy.

vector double atan2d2 (vector
double vx, vector double vy);

vector float atan2f4 (vector float
vx, vector float vy);

atanhd2 atanhf4 Computes the arc
hyperbolic tangent of
each element of vx.

vector double atanhd2 (vector
double vx);

vector float atanhf4 (vector float
vx);

cbrtd2 cbrtf4 Computes the cube root
of each element of vx.

vector double cbrtd2 (vector
double vx);

vector float cbrtf4 (vector float
vx);

cosd2 cosf4 Computes the cosine of
each element of vx.

vector double cosd2 (vector
double vx);

vector float cosf4 (vector float
vx);

coshd2 coshf4 Computes the
hyperbolic cosine of
each element of vx.

vector double coshd2 (vector
double vx);

vector float coshf4 (vector float
vx);

cosisind2 cosisinf4 Computes the cosine
and sine of each
element of x, and stores
the results in y and z as
follows:

cosisind2 (x,y,z) sets
y and z to {cos(x1),
sin(x1)} and
{cos(x2), sin(x2)}
where x={x1,x2}.

cosisinf4 (x,y,z) sets
y and z to {cos(x1),
sin(x1), cos(x2),
sin(x2)} and
{cos(x3), sin(x3),
cos(x4), sin(x4)}
where x={x1,x2,x3,x4}.

void cosisind2 (vector double x,
vector double *y, vector double
*z)

void cosisinf4 (vector float x,
vector float *y, vector float *z)

divd2 divf4 Computes the quotient
vx/vy.

vector double divd2 (vector
double vx, vector double vy);

vector float divf4 (vector float
vx, vector float vy);

Chapter 11. Using the high performance libraries 89

Table 23. MASS SIMD functions (continued)

Double-
precision
function

Single-
precision
function

Description Double-precision function
prototype

Single-precision function
prototype

erfcd2 erfcf4 Computes the
complementary error
function of each
element of vx.

vector double erfcd2 (vector
double vx);

vector float erfcf4 (vector float
vx);

erfd2 erff4 Computes the error
function of each
element of vx.

vector double erfd2 (vector
double vx);

vector float erff4 (vector float
vx);

expd2 expf4 Computes the
exponential function of
each element of vx.

vector double expd2 (vector
double vx);

vector float expf4 (vector float
vx);

exp2d2 exp2f4 Computes 2 raised to
the power of each
element of vx.

vector double exp2d2 (vector
double vx);

vector float exp2f4 (vector float
vx);

expm1d2 expm1f4 Computes (the
exponential function of
each element of vx) - 1.

vector double expm1d2 (vector
double vx);

vector float expm1f4 (vector
float vx);

exp2m1d2 exp2m1f4 Computes (2 raised to
the power of each
element of vx) -1.

vector double exp2m1d2 (vector
double vx);

vector float exp2m1f4 (vector
float vx);

hypotd2 hypotf4 For each element of vx
and the corresponding
element of vy,
computes
sqrt(x*x+y*y).

vector double hypotd2 (vector
double vx, vector double vy);

vector float hypotf4 (vector float
vx, vector float vy);

lgammad2 lgammaf4 Computes the natural
logarithm of the
absolute value of the
Gamma function of
each element of vx .

vector double lgammad2 (vector
double vx);

vector float lgammaf4 (vector
float vx);

logd2 logf4 Computes the natural
logarithm of each
element of vx.

vector double logd2 (vector
double vx);

vector float logf4 (vector float
vx);

log2d2 log2f4 Computes the base-2
logarithm of each
element of vx.

vector double log2d2 (vector
double vx);

vector float log2f4 (vector float
vx);

log10d2 log10f4 Computes the base-10
logarithm of each
element of vx.

vector double log10d2 (vector
double vx);

vector float log10f4 (vector float
vx);

log1pd2 log1pf4 Computes the natural
logarithm of each
element of (vx +1).

vector double log1pd2 (vector
double vx);

vector float log1pf4 (vector float
vx);

log21pd2 log21pf4 Computes the base-2
logarithm of each
element of (vx +1).

vector double log21pd2 (vector
double vx);

vector float log21pf4 (vector
float vx);

powd2 powf4 Computes each element
of vx raised to the
power of the
corresponding element
of vy.

vector double powd2 (vector
double vx, vector double vy);

vector float powf4 (vector float
vx, vector float vy);

90 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Table 23. MASS SIMD functions (continued)

Double-
precision
function

Single-
precision
function

Description Double-precision function
prototype

Single-precision function
prototype

qdrtd2 qdrtf4 Computes the quad
root of each element of
vx.

vector double qdrtd2 (vector
double vx);

vector float qdrtf4 (vector float
vx);

rcbrtd2 rcbrtf4 Computes the
reciprocal of the cube
root of each element of
vx.

vector double rcbrtd2 (vector
double vx);

vector float rcbrtf4 (vector float
vx);

recipd2 recipf4 Computes the
reciprocal of each
element of vx.

vector double recipd2 (vector
double vx);

vector float recipf4 (vector float
vx);

rqdrtd2 rqdrtf4 Computes the
reciprocal of the quad
root of each element of
vx.

vector double rqdrtd2 (vector
double vx);

vector float rqdrtf4 (vector float
vx);

rsqrtd2 rsqrtf4 Computes the
reciprocal of the square
root of each element of
vx.

vector double rsqrtd2 (vector
double vx);

vector float rsqrtf4 (vector float
vx);

sincosd2 sincosf4 Computes the sine and
cosine of each element
of vx.

void sincosd2 (vector double vx,
vector double *vs, vector double
*vc);

void sincosf4 (vector float vx,
vector float *vs, vector float *vc);

sind2 sinf4 Computes the sine of
each element of vx.

vector double sind2 (vector
double vx);

vector float sinf4 (vector float
vx);

sinhd2 sinhf4 Computes the
hyperbolic sine of each
element of vx.

vector double sinhd2 (vector
double vx);

vector float sinhf4 (vector float
vx);

sqrtd2 sqrtf4 Computes the square
root of each element of
vx.

vector double sqrtd2 (vector
double vx);

vector float sqrtf4 (vector float
vx);

tand2 tanf4 Computes the tangent
of each element of vx.

vector double tand2 (vector
double vx);

vector float tanf4 (vector float
vx);

tanhd2 tanhf4 Computes the
hyperbolic tangent of
each element of vx.

vector double tanhd2 (vector
double vx);

vector float tanhf4 (vector float
vx);

Compiling and linking a program with MASS
To compile an application that calls the functions in the following MASS libraries,
specify the corresponding library names on the -l link option.

Table 24. The scalar, vector, and SIMD MASS library

MASS library Library name

Scalar library mass

Vector library massv or massvp8

SIMD library mass_simdp8

For example, if the MASS libraries are installed in the default directory, you can
specify one of the following:

Chapter 11. Using the high performance libraries 91

Link object file progc with scalar library libmass.a and vector library libmassv.a

xlc progc.c -o progc -lmass -lmassv

Link object file progc with SIMD library libmass_simdp8.a
xlc progc.c -o progc -lmass_simdp8

Using libmass.a with the math system library
If you want to use the libmass.a scalar library for some functions and the normal
math library libm.a for other functions, follow this procedure to compile and link
your program:
1. Use the ar command to extract the object files of the wanted functions from

libmass.a. For most functions, the object file name is the function name
followed by .s64.o.1 For example, to extract the object file for the tan function,
the command would be:
ar -x tan.s64.o libmass.a

2. Archive the extracted object files into another library:
ar -qv libfasttan.a tan.s64.o
ranlib libfasttan.a

3. Create the final executable using xlc, specifying -lfasttan instead of -lmass:
xlc sample.c -o sample -Ldir_containing_libfasttan -lfasttan

This links only the tan function from MASS (now in libfasttan.a) and the
remainder of the math functions from the standard system library.

Exceptions:

1. The sin and cos functions are both contained in the object file sincos.s64.o. The
cosisin and sincos functions are both contained in the object file cosisin.s64.o.

2. The XL C/C++ pow function is contained in the object file dxy.s64.o.

Note: The cos and sin functions will both be exported if either one is exported.
cosisin and sincos will both be exported if either one is exported.

Using the Basic Linear Algebra Subprograms – BLAS
Four Basic Linear Algebra Subprograms (BLAS) functions are shipped with the XL
C/C++ compiler in the libxlopt library. The functions consist of the following:
v sgemv (single-precision) and dgemv (double-precision), which compute the

matrix-vector product for a general matrix or its transpose
v sgemm (single-precision) and dgemm (double-precision), which perform combined

matrix multiplication and addition for general matrices or their transposes

Because the BLAS routines are written in Fortran, all parameters are passed to
them by reference and all arrays are stored in column-major order.

Note: Some error-handling code has been removed from the BLAS functions in
libxlopt, and no error messages are emitted for calls to the these functions.

“BLAS function syntax” on page 93 describes the prototypes and parameters for
the XL C/C++ BLAS functions. The interfaces for these functions are similar to
those of the equivalent BLAS functions shipped in IBM's Engineering and Scientific
Subroutine Library (ESSL); for more information and examples of usage of these
functions, see Engineering and Scientific Subroutine Library Guide and Reference,
available at the Engineering and Scientific Subroutine Library (ESSL) and Parallel
ESSL web page.

92 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.essl.doc/esslbooks.html
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.essl.doc/esslbooks.html

“Linking the libxlopt library” on page 95 describes how to link to the XL C/C++
libxlopt library if you are also using a third-party BLAS library.

BLAS function syntax
The prototypes for the sgemv and dgemv functions are as follows:
void sgemv(const char *trans, int *m, int *n, float *alpha,

void *a, int *lda, void *x, int *incx,
float *beta, void *y, int *incy);

void dgemv(const char *trans, int *m, int *n, double *alpha,
void *a, int *lda, void *x, int *incx,
double *beta, void *y, int *incy);

The parameters are as follows:

trans
is a single character indicating the form of the input matrix a, where:
v ’N’ or ’n’ indicates that a is to be used in the computation
v ’T’ or ’t’ indicates that the transpose of a is to be used in the computation

m represents:
v the number of rows in input matrix a
v the length of vector y, if ’N’ or ’n’ is used for the trans parameter
v the length of vector x, if ’T’ or ’t’ is used for the trans parameter

The number of rows must be greater than or equal to zero, and less than the
leading dimension of the matrix a (specified in lda)

n represents:
v the number of columns in input matrix a
v the length of vector x, if ’N’ or ’n’ is used for the trans parameter
v the length of vector y, if ’T’ or ’t’ is used for the trans parameter

The number of columns must be greater than or equal to zero.

alpha
is the scaling constant for matrix a

a is the input matrix of float (for sgemv) or double (for dgemv) values

lda
is the leading dimension of the array specified by a. The leading dimension
must be greater than zero. The leading dimension must be greater than or
equal to 1 and greater than or equal to the value specified in m.

x is the input vector of float (for sgemv) or double (for dgemv) values.

incx
is the stride for vector x. It can have any value.

beta
is the scaling constant for vector y

y is the output vector of float (for sgemv) or double (for dgemv) values.

incy
is the stride for vector y. It must not be zero.

Note: Vector y must have no common elements with matrix a or vector x;
otherwise, the results are unpredictable.

Chapter 11. Using the high performance libraries 93

The prototypes for the sgemm and dgemm functions are as follows:
void sgemm(const char *transa, const char *transb,

int *l, int *n, int *m, float *alpha,
const void *a, int *lda, void *b, int *ldb,
float *beta, void *c, int *ldc);

void dgemm(const char *transa, const char *transb,
int *l, int *n, int *m, double *alpha,
const void *a, int *lda, void *b, int *ldb,
double *beta, void *c, int *ldc);

The parameters are as follows:

transa
is a single character indicating the form of the input matrix a, where:
v ’N’ or ’n’ indicates that a is to be used in the computation
v ’T’ or ’t’ indicates that the transpose of a is to be used in the computation

transb
is a single character indicating the form of the input matrix b, where:
v ’N’ or ’n’ indicates that b is to be used in the computation
v ’T’ or ’t’ indicates that the transpose of b is to be used in the computation

l represents the number of rows in output matrix c. The number of rows must
be greater than or equal to zero, and less than the leading dimension of c.

n represents the number of columns in output matrix c. The number of columns
must be greater than or equal to zero.

m represents:
v the number of columns in matrix a, if ’N’ or ’n’ is used for the transa

parameter
v the number of rows in matrix a, if ’T’ or ’t’ is used for the transa parameter

and:
v the number of rows in matrix b, if ’N’ or ’n’ is used for the transb

parameter
v the number of columns in matrix b, if ’T’ or ’t’ is used for the transb

parameter

m must be greater than or equal to zero.

alpha
is the scaling constant for matrix a

a is the input matrix a of float (for sgemm) or double (for dgemm) values

lda
is the leading dimension of the array specified by a. The leading dimension
must be greater than zero. If transa is specified as ’N’ or ’n’, the leading
dimension must be greater than or equal to 1. If transa is specified as ’T’ or
’t’, the leading dimension must be greater than or equal to the value specified
in m.

b is the input matrix b of float (for sgemm) or double (for dgemm) values.

ldb
is the leading dimension of the array specified by b. The leading dimension
must be greater than zero. If transb is specified as ’N’ or ’n’, the leading
dimension must be greater than or equal to the value specified in m. If transa is
specified as ’T’ or ’t’, the leading dimension must be greater than or equal to
the value specified in n.

94 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

beta
is the scaling constant for matrix c

c is the output matrix c of float (for sgemm) or double (for dgemm) values.

ldc
is the leading dimension of the array specified by c. The leading dimension
must be greater than zero. If transb is specified as ’N’ or ’n’, the leading
dimension must be greater than or equal to 0 and greater than or equal to the
value specified in l.

Note: Matrix c must have no common elements with matrices a or b; otherwise,
the results are unpredictable.

Linking the libxlopt library
By default, the libxlopt library is linked with any application that you compile
with the XL C/C++ compiler. However, if you are using a third-party BLAS library
but want to use the BLAS routines shipped with libxlopt, you must specify the
libxlopt library before any other BLAS library on the command line at link time.
For example, if your other BLAS library is called libblas.a, you would compile
your code with the following command:
xlc app.c -lxlopt -lblas

The compiler will call the sgemv, dgemv, sgemm, and dgemm functions from the
libxlopt library and all other BLAS functions in the libblas.a library.

Chapter 11. Using the high performance libraries 95

96 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Chapter 12. Vector element order toggling

To consistently use the instructions generated by vector built-in functions, users
need to make all existing Vector Multimedia Extension (VMX) and Vector Scalar
Extension (VSX) load and store built-in functions operate on the vectors in registers
in the same vector element order, either little endian or big endian element order.

Vector element order

The -maltivec or -qaltivec option affects the vector element order only in
registers when the vectors are operated by a specific set of functions. In registers,
the vector layout differs when the computer loads the vector in either big endian
element order or little endian element order.

Big endian element order
Vectors are laid out in vector registers from left to right, so that element 0
is the leftmost element in the register.

Little endian element order
Vectors are laid out in vector registers from right to left, so that element 0
is the rightmost element in the register.

For more information, see “Example: Vector layout in the memory and register” on
page 98

Rules for vector element order toggling

The vector element order is toggled in registers by following these rules:
v The -maltivec or -qaltivec option does not affect the vector element order in

memory, where the vector elements are always stored in big endian element
order.
For example, in memory, the vector initialization is not affected by the -maltivec
or -qaltivec option. The vectors initialized by the union with the non-vectors
(such as arrays) are always in big endian element order in memory. When the
initialized vector is loaded to registers, the vector element order is always
reversed to little endian element order in registers even when -qaltivec=be.
However, if the vector loading is realized by using the vector built-in function,
the vector element order is arranged with respect to the -maltivec or -qaltivec
option.
The previous rules apply to the vector literals as well. The vector literals are
stored always in big endian element order in the memory. When the vector
literals are loaded to registers, the vector element order is always reversed to
little endian element order in registers.

v When -qaltivec=le is in effect, the behaviors of functions are as follows:
– The VMX and VSX load built-in functions load vectors to registers in little

endian element order.
– The VMX and VSX store built-in functions assume that the vectors to be

stored are in little endian element order in registers.
– The nonload and nonstore built-in functions assume that vectors are loaded in

registers in little endian element order.

© Copyright IBM Corp. 1996, 2014 97

v When -qaltivec=be is in effect, these functions operate on the vectors in an
opposite way of -qaltivec=le. The vectors in registers are in big endian element
order.

v Regardless of the -maltivec or -qaltivec option, the vec_xl_be function loads
vectors to registers always in big endian element order and the vec_xst_be
function assumes that vectors to be stored are always in big endian element
order in registers.

For more information, see “Example: The vector built-in functions affected by the
-maltivec or -qaltivec option” on page 99 and “Example: The vector initialization
by using the union with arrays” on page 99

Example: Vector layout in the memory and register

The following example gets the first element of vector va by calling the vec_extract
function. The function returning value is different based on the -maltivec or
-qaltivec option that determines whether vec_extract arranges the vector elements
in big endian or little endian element order.
int get_first_element(va)

{
vector signed int va;
printf("%i\n", vec_extract(va, 0));
//vec_extract is affected by the -maltivec or -qaltivec option
}

The following tables show the vector layout in the memory and the register.

Table 25. Vector layout in the memory

Vector element
value

E0 E1 E2 E3

v When -qaltivec=be, the vector elements are loaded to registers in big endian
element order and vector layout looks as follows.

Table 26. Vector layout in big endian element order

Vector element
number

0 1 2 3

Vector element
value

E0 E1 E2 E3

The elements of vector va are ordered from the first to last, and stored from the
left of registers. The get_first_element function gets the first element E0 from the
left of registers.

v When -qaltivec=le, the vector elements are loaded to registers in little endian
element order and vector layout looks as follows.

Table 27. Vector layout in little endian element order

Vector element
number

3 2 1 0

Vector element
value

E3 E2 E1 E0

The elements of vector va are ordered from the last to first, and also stored from
the left of registers. The get_first_element function gets the first element E0 from
the right of registers.

98 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Example: The vector built-in functions affected by the -maltivec
or -qaltivec option

The following program vec_xlw4.c shows that the vec_xlw4 function loads the
vector elements in registers in the order specified by the -maltivec or -qaltivec
option.
int main()
{

vector signed int a4;
int c4[4] = {0,1,2,3};
a4 = vec_xlw4(0, c4);
//vec_xlw4 is affected by the -maltivec or -qaltivec option
printf("%i %i %i %i\n", a4[0], a4[1], a4[2], a4[3]);

}

v Compile the program with -qaltivec=be by running the following command:
xlc vec_xlw4.c -qaltivec=be

Ouput:
0 1 2 3

v Compile the program with -qaltivec=le by running the following command:
xlc vec_xlw4.c -qaltivec=le

Ouput:
0 1 2 3

Example: The vector initialization by using the union with arrays

The following program example vec_equiv.c contains the vectors initialization by
using the union with arrays. The vector loading is not affected by the -maltivec or
-qaltivec option and is loaded to registers always in little endian element order.
Therefore, the vector elements extracted by vec_extract function are different
between -qaltivec=be and -qaltivec=le .
int main()
{

union {
vector signed int a4;
int c4[4];

};

//In the memory, the vector initialization (by using the union)
//is not affected by the -maltivec or -qaltivec option and the vector is stored in
//big endian element order. Then, the initialized vector is loaded
//in registers by being reveresed to the little endian element order.

c4[0] = 0; c4[1] = 1; c4[2] = 2; c4[3] = 3;
for (int i=0;i<4;i++)
printf("%i ", vec_extract(a4,i));
//vect_extract is affected by the -maltivec or -qaltivec option

printf("\n");
}

v Compile the codes with -qaltivec=le by running the following command:
xlc vec_equiv.c -qaltivec=le

Ouput:
0 1 2 3

v Compile the program with -qaltivec=be by running the following command:
xlc vec_equiv.c -qaltivec=be

Ouput:

Chapter 12. Vector element order toggling 99

3 2 1 0

The compilation result is different from that of compilation with -qaltivec=le.
Related information:

-maltivec (-qaltivec)

Program migration from big endian systems
When migrating the programs that contain the Vector Multimedia Extension (VMX)
and Vector Scalar Extension (VSX) built-in functions from big endian systems, you
can use -qaltivec=be to minimize program changes, but you need to pay attention
in specific cases.

The following table shows what users need to pay attention when migrating codes
from big endian systems by using -qaltivec=be.

Table 28. Attention when -qaltivec=be

Case Attention

If the existing program contains
only VMX load and store built-in
functions

Using -qaltivec=be may affect the program
performance; using -qaltivec=le may affect the
performance in different ways.

If the existing program contains
only VSX load and store built-in
functions

In the existing programs, you can use the vec_xl and
vec_xst functions to replace the VSX load and store
built-in functions to maximally simplify the code
changes.

If the existing program contains
both VMX and VSX load and
store built-in functions

You need to pay attention to the differences of the
element order of vectors that are operated by the VMX
and VSX built-in functions in little endian systems.

If the existing program contains
the vector initialization by using
union with arrays

You need to use the vec_ld or vec_xl function to load
the vectors explicitly, instead of using the union with
arrays, or you can reverse the element order of the
array used for vector initialization.

The vector literals Based on the meanings of vector literals, the users
might change the codes properly.

Related information:

-maltivec (-qaltivec)

Vector built-in functions

100 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2014 101

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd. Laboratory
8200 Warden Avenue
Markham, Ontario L6G 1C7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM's application programming interfaces.

102 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1998, 2014.

Trademarks and service marks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe is a registered trademark of Adobe Systems Incorporated in the United
States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 103

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

104 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

Index

Special characters
-fpack-struct (-qalign) 11
-ftrapping-math (-qflttrap) 20
-mcpu 38
-mcpu (-qarch) 38
-mtune 38
-O0 32
-O2 33
-O3 35

trade-offs 35
-O4 36

trade-offs 37
-O5 37

trade-offs 38
-qcache 36, 38
-qfloat 18, 20

IEEE conformance 17
multiply-add operations 17

-qhot 39
-qipa 36, 38, 41

IPA process 37
-qlongdouble

corresponding Fortran types 6
-qpdf 43
-qpriority 26
-qstrict 18, 35
-qwarn64 1
-shared 25
-y 18

Numerics
64-bit mode 4

alignment 4
bit-shifting 3
data types 1
Fortran 4
long constants 2
long types 1
optimization 64
pointers 3

A
advanced optimization 34
aggregate

alignment 4, 11, 12
Fortran 8

aligned attribute 14
alignment 4, 11

bit-fields 13
modes 11
modifiers 14

architecture
optimization 38

arrays, Fortran 8
attribute

aligned 14
init_priority 26
packed 14

B
basic example, described viii
basic optimization 32
bit-field 13

alignment 13
bit-shifting 3
BLAS library 92

C
C++ templates 23
C++11

delegating constructors 21
explicit instantiation declarations 61
rvalue references 64
target constructors 21

cloning, function 38, 41
constants

folding 18
long types 2
rounding 18

D
data types 1

64-bit mode 1
Fortran 4, 6
long 1
size and alignment 11

debugging 55
dynamic library 25

E
errors, floating-point 20
exceptions, floating-point 20

F
floating-point

exceptions 20
folding 18
IEEE conformance 17
range and precision 17
rounding 18

folding, floating-point 18
Fortran

64-bit mode 4
aggregates 8
arrays 8
data types 4, 6
function calls 8
function pointers 9
identifiers 5

function calls
Fortran 8
optimizing 59

function cloning 38, 41
function pointers, Fortran 9

H
hardware optimization 38

I
IEEE conformance 17
init_priority attribute 26
initialization order of C++ static

objects 26
input/output

optimizing 59
interlanguage calls 8
interprocedural analysis (IPA) 41

L
libmass library 82
libmassv library 84
library

BLAS 92
MASS 81
scalar 82
shared (dynamic) 25
static 25
vector 84

linear algebra functions 92
long constants, 64-bit mode 2
long data type, 64-bit mode 1
loop optimization 39

M
marking variables as local or

imported 51
MASS libraries 81

scalar functions 82
vector functions 84

matrix multiplication functions 92
memory

management 61
mergepdf 43
move 64

O
optimization 59

-O0 32
-O2 33
-O3 35
-O4 36
-O5 37
64-bit mode 64
across program units 41
advanced 34
architecture 38, 51
basic 32
debugging 55
hardware 38
loop 39

© Copyright IBM Corp. 1996, 2014 105

optimization (continued)
math functions 81

optimization and tuning
optimizing 31
tuning 31

optimization trade-offs
-O3 35
-O4 37
-O5 38

optimizing
applications 31

P
packed attribute 14
perfect forwarding 64
performance tuning 59
pointers

64-bit mode 3
Fortran 9

pragma
pack 14
priority 26

precision, floating-point numbers 17
priority of static objects 26
profile-directed feedback (PDF) 43
profiling 43

R
range, floating-point numbers 17
rounding, floating-point 18

S
scalar MASS library 82
shared (dynamic) library 25
showpdf 43
static library 25
static objects, C++ 26
strings

optimizing 62
structure alignment 12

64-bit mode 4

T
template model 23
Toggling the vector element order

Migrating codes from big endian
systems 100

tuning for performance 38

V
Vector element order 97
Vector element order toggling 97
vector MASS library 84
visibility attributes 67

propagation 75

X
xlopt library 92

106 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

IBM®

Product Number: 5765-J08; 5725-C73

Printed in USA

SC27-6560-00

	Contents
	About this information
	Who should read this information
	How to use this information
	How this information is organized
	Conventions
	Related information
	IBM XL C/C++ information
	Standards and specifications
	Other IBM information
	Other information

	Technical support
	How to send your comments

	Chapter 1. Porting from 32-bit to 64-bit mode
	Assigning long values
	Assigning constant values to long variables
	Bit-shifting long values

	Assigning pointers
	Aligning aggregate data
	Calling Fortran code

	Chapter 2. Using XL C/C++ with Fortran
	Identifiers
	Corresponding data types
	Character and aggregate data
	Function calls and parameter passing
	Pointers to functions
	Sample program: C/C++ calling Fortran

	Chapter 3. Aligning data
	Using alignment modes
	Alignment of aggregates
	Alignment of bit-fields

	Using alignment modifiers

	Chapter 4. Handling floating-point operations
	Floating-point formats
	Handling multiply-add operations
	Compiling for strict IEEE conformance
	Handling floating-point constant folding and rounding
	Matching compile-time and runtime rounding modes

	Handling floating-point exceptions

	Chapter 5. Using C++ constructors
	Using delegating constructors (C++11)

	Chapter 6. The C++ template model
	Chapter 7. Constructing a library
	Compiling and linking a library
	Compiling a static library
	Compiling a shared library
	Linking a library to an application
	Linking a shared library to another shared library

	Initializing static objects in libraries (C++)
	Assigning priorities to objects
	Order of object initialization across libraries

	Chapter 8. Optimizing your applications
	Distinguishing between optimization and tuning
	Steps in the optimization process
	Basic optimization
	Optimizing at level 0
	Optimizing at level 2

	Advanced optimization
	Optimizing at level 3
	An intermediate step: adding -qhot suboptions at level 3
	Optimizing at level 4
	The IPA process

	Optimizing at level 5

	Tuning for your system architecture
	Getting the most out of target machine options

	Using high-order loop analysis and transformations
	Getting the most out of -qhot

	Using interprocedural analysis
	Getting the most from -qipa

	Using profile-directed feedback
	Viewing profiling information with showpdf
	Object level profile-directed feedback

	Marking variables as local or imported
	Getting the most out of -qdatalocal

	Other optimization options

	Chapter 9. Debugging optimized code
	Understanding different results in optimized programs
	Debugging in the presence of optimization

	Chapter 10. Coding your application to improve performance
	Finding faster input/output techniques
	Reducing function-call overhead
	Using template explicit instantiation declarations (C++11)
	Managing memory efficiently (C++ only)
	Optimizing variables
	Manipulating strings efficiently
	Optimizing expressions and program logic
	Optimizing operations in 64-bit mode
	Using rvalue references (C++11)
	Using visibility attributes (IBM extension)
	Types of visibility attributes
	Rules of visibility attributes
	Propagation rules (C++ only)
	Specifying visibility attributes using the -fvisibility option
	Specifying visibility attributes using pragma preprocessor directives

	Chapter 11. Using the high performance libraries
	Using the Mathematical Acceleration Subsystem libraries (MASS)
	Using the scalar library
	Using the vector libraries
	Using the SIMD libraries
	Compiling and linking a program with MASS
	Using libmass.a with the math system library

	Using the Basic Linear Algebra Subprograms – BLAS
	BLAS function syntax
	Linking the libxlopt library

	Chapter 12. Vector element order toggling
	Program migration from big endian systems

	Notices
	Trademarks and service marks

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	O
	P
	R
	S
	T
	V
	X

